期刊论文详细信息
JOURNAL OF THEORETICAL BIOLOGY 卷:496
Predicting protein-peptide binding sites with a deep convolutional neural network
Article
Wardah, Wafaa1  Dehzangi, Abdollah2  Taherzadeh, Ghazaleh3  Rashid, Mahmood A.4,5  Khan, M. G. M.1  Tsunoda, Tatsuhiko6,7,8,9  Sharma, Alok5,7,8,10 
[1] Univ South Pacific, Fac Sci, Sch Comp Informat & Math Sci, Suva, Fiji
[2] Morgan State Univ, Dept Comp Sci, Baltimore, MD 21239 USA
[3] Univ Maryland, Inst Biosci & Biotechnol Res, College Pk, MD USA
[4] Victoria Univ, Inst Sustainable Ind & Liveable Cities, Melbourne, Vic, Australia
[5] Griffith Univ, Inst Integrated & Intelligent Syst, Nathan, Qld, Australia
[6] Tokyo Med & Dent Univ, Med Res Inst, Dept Med Sci Math, Tokyo, Japan
[7] RIKEN, Lab Med Sci Math, Ctr Integrat Med Sci, Yokohama, Kanagawa, Japan
[8] JST, CREST, Tokyo 1138510, Japan
[9] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Lab Med Sci Math, Tokyo, Japan
[10] Univ South Pacific, Sch Engn & Phys, Suva, Fiji
关键词: Protein-peptide binding;    Artificial intelligence;    Deep learning;    Convolutional neural network;    Protein sequence;   
DOI  :  10.1016/j.jtbi.2020.110278
来源: Elsevier
PDF
【 摘 要 】

Motivation: Interactions between proteins and peptides influence biological functions. Predicting such bio-molecular interactions can lead to faster disease prevention and help in drug discovery. Experimental methods for determining protein-peptide binding sites are costly and time-consuming. Therefore, computational methods have become prevalent. However, existing models show extremely low detection rates of actual peptide binding sites in proteins. To address this problem, we employed a two-stage technique first, we extracted the relevant features from protein sequences and transformed them into images applying a novel method and then, we applied a convolutional neural network to identify the peptide binding sites in proteins. Results: We found that our approach achieves 67% sensitivity or recall (true positive rate) surpassing existing methods by over 35%. (C) 2020 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jtbi_2020_110278.pdf 1705KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次