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a b s t r a c t 

Motivation: Interactions between proteins and peptides influence biological functions. Predicting such 

bio-molecular interactions can lead to faster disease prevention and help in drug discovery. Experimental 

methods for determining protein-peptide binding sites are costly and time-consuming. Therefore, compu- 

tational methods have become prevalent. However, existing models show extremely low detection rates 

of actual peptide binding sites in proteins. To address this problem, we employed a two-stage technique - 

first, we extracted the relevant features from protein sequences and transformed them into images apply- 

ing a novel method and then, we applied a convolutional neural network to identify the peptide binding 

sites in proteins. 

Results: We found that our approach achieves 67% sensitivity or recall (true positive rate) surpassing 

existing methods by over 35%. 

© 2020 Elsevier Ltd. All rights reserved. 

1

 

t  

b  

i  

a  

l  

t  

i  

c  

f  

r

e  

t  

p  

l  

t  

a  

t  

2  

s  

e  

d  

i  

h

0

. Introduction 

For the many roles that proteins play in and around cells, in-

eracting with other molecules is known to be what enables most

iological functionalities. To perform biological processes, proteins

nteract with a variety of molecular structures, such as nucleic

cids (RNA and DNA) ( Yan et al., 2016; Peng and Kurgan, 2015 ),

ipids, various small ligands ( Roche et al., 2015 ) and other pro-

eins. Some are covalent interactions including disulphide bond-

ng and electron sharing, and others are weaker interactions in-

luding hydrogen bonds, hydrophobic interactions, Van der Waals

orces and ionic interactions ( Westermarck et al., 2013 ). The pres-
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nce of water molecules also plays a vital role in the interactions

hat occur ( Janin, 1999 ). While DNA repair, replication, gene ex-

ression and metabolism are known to be some of the vital cellu-

ar processes that protein interactions facilitate, studies have found

hat such interactions can also induce abnormal cellular behavior

nd disease such as cancers, where up to 40% of these interac-

ions involve binding with relatively small peptides ( Neduva et al.,

005 ). Therefore, analyzing protein-peptide interactions is neces-

ary for understanding the molecular factors leading to various dis-

ases ( Nibbe et al., 2011; Kuzmanov and Emili, 2013 ) and drug

iscovery ( Vlieghe et al., 2009 ). Identifying the residues that are

nvolved in these interactions and understanding the mechanisms

hat result in the binding of proteins and peptides are vital. In

ivo methods currently used in this field include the Yeast two

 hybrid screening method and affinity purification which involve

igh-throughput screening such as mass spectrometry and Nuclear
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Fig. 1. The diagram shows a simplified overview of the protein-peptide binding 

site prediction problem. The protein’s constituent amino acid sequence information 

is fed into the computational engine, which then produces the identified peptide 

binding sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

i  

t  

t  

t  

(  

(  

t  

e  

f  

t  

d  

w  

b  

e  

s  

(  

d

 

m  

I  

t  

n  

a  

t  

p  

b  

m  

t  

t  

i  

p  

s  

(  

u  

b  

L  

a  

T  

t  

V  

w  

D  

t  

3  

i  

a  

m  

i  

t  

p  

2  

p  

s  

T  

f  

p  

(  

h  

m  

q  

s  

i  

a  

a  

w

Magnetic Resonance spectroscopy, which are expensive, labor-

intensive and time-consuming. Through such experiments, pro-

tein data have been archived in repositories and are mostly ac-

cessible to the public. The first such repository was the Database

of Interacting Protein (DIP) ( Xenarios and Eisenberg, 2001 ). Other

repositories that contain protein interaction related information in-

clude the Protein Data Bank (PDB) ( Berman et al., 2016 ), BioLip

( Yang et al., 2012 ) and Mentha ( Calderone et al., 2013 ). 

Availability of protein data allowed machine learning tech-

niques to be applied to the protein-peptide binding site prediction

problem. Various methods were proposed to predict the peptide-

binding sites of specific protein domains such as Major Histocom-

patibility Complex (MHC), PDZ (PSD-95, Discs-large, ZO-1), Src ho-

mology 2 (SH2) and Src homology 3 (SH3). In ( Guo et al., 2013 ),

researchers developed models MHC2SK and MHC2SKpan to com-

putationally predict MHC binding peptides. They used Blosum62

for feature preparation ( Henikoff and Henikoff, 1992 ) and pro-

posed a model inspired by Spectrum RBF string kernel (SRBF)

( Toussaint et al., 2010 ). Another study ( Hou et al., 2009 ) employed

the Swiss-Prot database and used RBF kernel functions with Sup-

port Vector Machine (SVM) classifiers to predict peptide-binding

sites of SH3 domains. In ( Kundu et al., 2013 ), researchers devel-

oped yet another SVM-based tool to predict protein-peptide bind-

ing sites of SH2 domains. Furthermore, PDZ-DockScheme was de-

veloped using a simulated annealing algorithm and rotamer op-

timization to predict protein-peptide bindings in PDZ domains

( Niv and Weinstein, 2005 ). A limitation of these methods is that

they require known protein structures, while in reality, most pro-

tein structures are still unknown. Methods that are able to uti-

lize protein sequence information to achieve reasonably accurate

protein-peptide binding residues are a valuable contribution to the

scientific community. 

The problem of protein-peptide interaction can be viewed as

a binary classification problem, where in a protein chain, each

residue can be classified into one of two classes: binding or non-

binding (shown in Fig. 1 ). Some techniques that have been used

with this strategy include SVM, random forest and artificial neu-

ral networks (ANN). The models generally employ a sliding win-

dow to input the properties of the constituent residues along pro-

tein chains. The properties (or features) explored across literature

include sequence, structural, evolutionary and physicochemical in-

formation ( Taherzadeh et al., 2016; 2017 ). 

The common pipeline involves obtaining protein-ligand interac-

tion data from BioLip ( Yang et al., 2013 ), a semi curated database

that derives protein data from the PDB ( Berman et al., 2003 ). Fea-

tures are then selected, and the choice of computational technique

is applied. In 2007, authors of SPPIDER ( Porollo and Meller, 2007 )

used multiple classifiers including SVM, ANN and linear discrim-

inant analysis (LDA), where they studied the usefulness of the

relative solvent accessibility (RSA) ( Wagner et al., 2005 ) feature.

PSIVER ( Murakami and Mizuguchi, 2010 ) used inherent Naive

Bayes classifier with kernel density estimation methods. LORIS

( Dhole et al., 2014 ) and SPRINGS ( Singh et al., 2014 ) applied L1-

regularized logistic regression and ANN methods to multiple in-

put features. The method SPRINT is a server that makes sequence-

based predictions of protein-peptide binding sites using SVM clas-
ifier ( Taherzadeh et al., 2016 ). The features used were sequence

nformation in the form of 20 dimensional binary vectors, evolu-

ionary information obtained from PSI-BLAST in the form of posi-

ion specific scoring matrix (PSSM) ( Altschul et al., 1997 ), struc-

ural information obtained from the prediction tool SPIDER 2.0

 Heffernan et al., 2015 ) containing solvent accessible surface area

ASA) and secondary structure (SS), and physicochemical proper-

ies (steric parameter, hydrophobicity, volume, polarizability, iso-

lectric point, helix probability, and sheet probability) obtained

rom the AA Index database ( Kawashima et al., 1999 ). These fea-

ures were fed through the SVM model, which produced a pre-

icted label ( Vapnik, 20 0 0 ). SPRINT-Str ( Taherzadeh et al., 2017 )

as later developed by the same team to predict protein-peptide

inding sites using the random forest classifier ( Breiman, 2001 ),

mploying additional protein 3-dimensional structure features and

imilar validation techniques. CRF-PPI ( Wei et al., 2015 ) and SSWRF

 Wei et al., 2016 ) are similar methods and also use SVM and ran-

om forest algorithms. 

The problem that exists but gets ignored is that all current

ethods have extremely low rates of detecting actual binding sites.

n most proteins, about 94% of the residues do not bind with pep-

ides. If a tool predicted all residues as non-binding without run-

ing any computation at all, it would achieve an impressive 94%

ccuracy and 100% specificity score, but unfortunately would de-

ect zero binding sites in the proteins. The utility of a protein-

eptide binding site predictor lies in its ability to detect the actual

inding sites, this measure is known as sensitivity, and the current

ethods are limited to very low sensitivity scores. The challenge is

o develop a predictor whose classification is not skewed towards

he non-binding sites and at the same time achieve a high bind-

ng site detection rate. In this paper, we have tried to address this

roblem with our proposed method, Visual, which uses a generally

uccessful deep learning technique, convolutional neural networks

CNN), to predict the binding sites in proteins. Other methods have

tilized CNNs for binding site identification, however, none have

een used for the same objective. For example, DeepMHC ( Hu and

iu, 2017 ) uses a 1-dimensional CNN model for predicting whether

 given peptide will bind with a specific protein domain, MHC.

hey use 1-dimensional multi-channel one-hot vectors to represent

he 13 amino acid long peptide sequence as input. On the contrary,

isual uses each individual protein amino acid as input to predict

hether it will bind with a peptide. Another very successful tool,

eepSite ( Jimenez et al., 2017 ) uses a deeper CNN model to iden-

ify pockets in proteins where ligands are likely to bind. It uses

D images as input, which contributes to the high performance

t achieves. However, this tool is for identifying binding sites for

ll ligands, and not specifically peptides. The overall high perfor-

ance of CNNs in various domains as well as protein interaction

s evident. The area to optimize now is the derivation of the pro-

ein information and representation so it can be used as CNN in-

ut. A recently developed technology, DeepInsight ( Sharma et al.,

019 ) is a general model that can be applied for non-image sam-

les, like protein data. This is the first technique that applies three

teps of element arrangement, feature extraction and classification.

he element arrangement step is used to arrange an image suitable

or CNNs. In DeepInsight, data is transformed into images by ap-

lying either KPCA (kernel principal analysis component) or t-SNE

t-distributed stochastic neighbor embedding) followed by convex

ull algorithm. In this work, we have employed a simple yet novel

ethod whereby extracted and calculated features of protein se-

uences, such as residue sequence and locality, sequence-based

tructure predictions, evolutionary information and physicochem-

cal properties, are arranged into image-like representations that

re then processed by a CNN. Visual algorithm detects over twice

s many binding sites in the same dataset as previously published

orks. 
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. Materials and methods 

This section discusses the dataset used in this work, followed

y a description of the methods used to transform the data and

redict the protein-peptide binding sites in proteins. 

.1. Dataset 

Protein-peptide binding data was extracted from BioLiP

 Yang et al., 2013 ), where chains with less than 30 amino acid

esidues were said to be peptides. Redundant proteins that had

ore than 30% similarity were removed using the Blastclust toolkit

 Biegert et al., 2006 ). From this set, 10% of the proteins were ran-

omly selected and set aside as the independent test set, TS125.

nother 10% of the proteins were randomly selected and used as

 validation set, while the remaining proteins formed the train-

ng set. The resulting training, validation and independent test sets

ontained 1004 proteins with 243,766 residues, 112 proteins with

2,823 residues and 125 proteins with 30,870 residues, respec-

ively. 

Each residue in the protein sequence is classified as either pos-

tive (binding) or negative (non-binding). All the subsets described

bove have a class ratio of approximately 17:1, this means, on av-

rage, there is about 1 peptide binding site in an 18 residue long

rotein segment. There are way more non-binding residues in a

rotein than those that are binding, so as a binary classification

roblem, this is a case of highly imbalanced class distribution. 

.2. Features 

Features of the constituent amino acid residues were derived

n various ways such that a detailed description of each site was

vailable for the implemented model to classify. These features are

iscussed below: 

• Half sphere exposure (HSE) is a measure of how buried an

amino acid is in the protein 3D structure. The HSE values are

calculated based on the contact numbers of the upward and

downward hemispheres, as well as the pseudo C β-C α bonds

( Hamelryck, 2005 ). 

• A deep learning-based predicting tool, SPIDER2 ( Yang et al.,

2014 ), was used to obtain extended information about each

residue. The tool has shown impressive prediction results, as

noted in the literature. 

• Secondary Structure (SS) provides perspective into the local

3-dimensional conformation of the protein. Predicted values

include probabilities for each of the three classes, α-helix,

β-sheet and coil. 

• The Accessible Surface Area (ASA) describes the degree of

solvent accessibility of a residue within a protein. 

• Local backbone angles include θ , τ , φ and ψ . These are

torsion angles between contiguous residues and provide in-

sight into the residue’s geometric relation to its locality. 

• The PSSM is another feature that is available for proteins that

has been widely used in the literature. The sequence-profiles

were obtained from PSI-BLAST ( Altschul et al., 1997 ) using E-

value threshold of 0.001 in three iterations to extract the 20-

dimensional vector for each amino acid in the protein. 

• Physicochemical Properties - The amino acid residues can also

be represented with their physicochemical properties. These in-

clude steric parameter, hydrophobicity, volume, polarizability,

isoelectric point, helix and sheet probability ( Kawashima et al.,
1999 ). o  
.3. Method 

CNN classifiers require images as inputs, however, the protein

ata used here is not in an image format. Therefore, we first trans-

ormed the data into image to feed in the network. 

.3.1. Input transformation 

Various properties of the Amino Acid residues were used to cre-

te the image-like representations. The following sections describe

ow we transformed the protein data. 

eature vector 

First, each residue’s features, F 1 , . . . , F 6 , were combined to form

 feature vector. 

F 1 = { H SE 1 , H SE 2 , H SE 3 } 
F 2 = { SS 1 , SS 2 , SS 3 } 
F 3 = { ASA } 
F 4 = { θ, τ, φ, ψ} 
F 5 = { P SSM i,m 

} for all m = 1 , . . . , 20 , where m represents the

 th column of the i th amino acid 

F 6 = { P P 1 , . . . , P P 7 } 
So, if k th protein sequence P k has n residues; i.e., P k =

 R 1 , R 2 , . . . , R n } , then R i = { F 1 , F 2 , . . . , F 6 } . 
Therefore, stacking the features horizontally results in a feature

ector R i of size 38, that contains information about the residue’s

tructure, evolution and physicochemical properties. 

indowed segment 

A sliding window approach is used to capture the locality of

esidues. Each residue R i is represented by a segment S R i that is

f a fixed length. We have used a window size of 7 as it is not

oo small as to not be effective and not too large as to hinder the

omputer hardware performance. The residue of concern R i is in

he center of adjacent residues, 3 upstream and 3 downstream, are

lso captured in S R i . 

Generally, S R i = { R i −3 , . . . , R i , . . . , R i +3 } for all 4 ≤ i < n − 3 . 

For residues that are at either edge of the protein sequence,

 ≤ i ≤ 3 and n − 3 ≤ i ≤ n, the missing side of the segment was

ugmented by mirroring the available residues. The expressions

elow describe how the missing residues (marked with 

∗) were

reated. The start edge of the sequence is shown below in Fig. 2 : 

The result was a set of 2-dimensional arrays that could be nor-

alized and used in a CNN classifier as 7 × 38 pixel images. The

eatures were normalized so that each value was in a range of 0

nd 1. When viewed as a greyscale image, the lighter pixels repre-

ent high values, and the darker pixels represent low values (refer

o Fig. 3 ). 

.3.2. Convolutional neural network - CNN 

CNNs are deep neural networks that process data that come in

he form of multiple arrays where the local values are so closely

elated that they form detectable motifs, like images. The concept

f CNN arose from the workings of the biological visual system in

umans. Given a field of view, the visual system scans patches of

he field and learns to recognize the objects (feature maps) based

n those observed patches. Similarly, here, we convert the pro-

ein features into visual data and train the CNN to learn the fea-

ure maps in the given synthesized images. CNN models involve

omplex matrix operations which demand high processing power.

his work was achieved using the GTX1060Ti graphics card, pro-

rammed using PyTorch, a Python based deep learning platform

 PyTorch, 0 0 0 0 ). The source code for the Visual model can be ac-

essed online ( Visual, 0 0 0 0 ). The Visual model consists of 2 sets

f convolution layers, followed by a pooling layer and a fully con-

ected layer. In the first convolution layer, 256 [3 × 3] kernels slide

ver the [7 × 38] input image performing convolution operation
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Fig. 2. (a) shows S R 1 = { R ∗ i +3 , R 
∗

i +2 , R 
∗

i +1 , R i , R i +1 , R i +2 , R i +3 } where i = 1 , 

(b) shows S R 2 = { R ∗ i +2 , R 
∗

i +1 , R i , R i +1 , R i +2 , R i +3 , R i +4 } where i = 2 , and 

(c) shows S R 3 = { R ∗ i +1 , R i , R i +1 , R i +2 , R i +3 , R i +4 , R i +5 } where for i = 3 . 

Fig. 3. An example of an image-like input representing the center residue Serine 

(S), with window size = 7. Thus, a 7 × 38 image that can be classified with a CNN 

classifier. In order from left to right: 3 pixels represent the HSE values, 3 pixels 

represent the SS predicted probabilities, 1 pixel represents the ASA value, 4 pixels 

represent the backbone angles, 20 pixels represent the PSSM, and 7 pixels represent 

the Physicochemical properties of the amino acids. 
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resulting in 256 [5 × 36] convolved feature maps. These are fur-

ther transformed with the application of the Rectified Linear Unit

(ReLU) activation function ( y = max (0 , x ) ), producing rectified fea-

ture maps. The second convolution layer contains 256 [2 × 2] ker-

nels that perform convolution operation over the 256 [5 × 36] fea-

ture maps, resulting in 256 [4 × 35] convolved feature maps. The

ReLU activation function is applied to these as well, followed by a
ooling layer. In the pooling layer, the maximum values in every

 × 2 patch of the feature maps are collected via a sliding win-

ow to form a more robust pooled feature map. These are then

attened into a 1 × 8704 feature vector, which is then fed through

 fully connected layer, resulting in a 1 × 2 output that represents

he two classes: non-binding and binding (refer to Fig. 4 ). 

This model processed 128 samples per batch and an average

oss per batch was calculated using the Cross-Entropy Loss func-

ion upon comparing the predicted outputs with the actual target

abels. The internal weights of the network were adjusted using

he Adam optimizer ( Kingma and Ba, 2014 ), which is an optimized

ariant of the gradient decent algorithm ( Ruder, 2016 ). To avoid the

roblem of overfitting, early stopping technique was used to select

he optimal number of epochs for training. It was found that the

NN model produced best validation results when trained for 18

pochs. 

.3.3. Bayesian optimization of CNN hyperparameters 

CNN models contain many hyperparameters that have varying

ffects on their overall performance. There are a few methods that

id in tuning these hyperparameters. Grid search is the strategy

f trying out all possible values to arrive at the combination of

yperparameters that produces the best model. This is a useful

ethod, however, it is very time-consuming. Another strategy is

o try out values or options randomly to find the combination

hat produces the best model. Random search is also useful, but

lso relatively inefficient. A more apt strategy is to use some algo-

ithm that produces values or choices to implement in the model.

ayesian optimization has shown promising results recently in

nding hyperparameters for models most efficiently ( Snoek et al.,

012 ). Rather than trying random values or trying every possible

alue, Bayesian optimization uses calculated values for configur-

ng the model’s hyperparameters based on prior observations. The

xperiment was allowed to run for 350 iterations with different

ombinations of the two selected hyperparameters to achieve the

est performing model. The first hyperparameter found using this

ethod was the number of kernels in the two convolution lay-

rs of the CNN. The algorithm was given a list of options to select

rom 2 3 , 2 4 , 2 5 , . . . , 2 10 . The second hyperparameter was the learn-

ng rate (alpha) used by the Adam optimizer when updating the

eights of the network, where values ranged between 0.0 0 0 01 and

.001. The optimal hyperparameters were found at the 293 rd itera-

ion where number of kernels = 2 8 = 256 and Adam (alpha) learning

ate = 0.0 0 0 091 (refer to Fig. 5 ). 

.3.4. Performance evaluation 

To effectively evaluate the performance of the method, the fol-

owing values were calculated from the test outcome (confusion

atrix): 

• True positives (TP): the number of actual binding residues cor-

rectly predicted as binding sites. 

• True negatives (TN): the number of actual non-binding residues

correctly predicted as non-binding. 

• False positives (FP): the number of actual non-binding residues

incorrectly predicted as binding sites. 

• False negatives (FN): the number of actual binding residues in-

correctly predicted as non-binding sites. 

Sensitivity is the measure of how well the actual binding sites

re identified as binding sites. It is often called the recall, hit rate,

r true positive rate (TPR). Sensitivity is a vital measure of perfor-

ance in our case since being able to detect maximum residues in

 protein that would bind with peptides can help in understanding

rotein interaction much better. Since binding sites are scarce in a

rotein, the rate at which the predictor method is able to detect
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Fig. 4. The various transformations occurring throughout the CNN on a sample input are shown. The amino acid sequence is transformed into a [7 × 38] pixel image, 

which is fed into the CNN. The first convolution layer produces 256 [5 × 36] matrices. The second convolution layer converts these into 256 [4 × 35] matrices. Next, the 

maxpooling layer transforms them into 256 [2 × 17] matrices, which are then flattened into a single [1 × 8704] vector. This is passed through a fully connected dense layer. 

This produces the final [1 × 2] vector, where the index 0 represents negative class and index 1 represents the positive class. In the sample shown, the predicted output is 

negative. 
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hem is vital. It is calculated by 

ensit i v it y = 

T P 

T P + F N 

(1)

Specificity is the ability of the predictor to correctly classify ac-

ual non-binding sites as such. In this case, most residues (about

4.4% of the test set TS125) do not bind with peptides. The speci-

city can be calculated by 

peci f icity = 

T N 

T N + F P 
(2) 

Mathews correlation coefficient (MCC) is a score that is seen as

 balanced measure that takes into account all 4 statistics from the

onfusion matrix. It can be calculated as 

CC = 

T P × T N − F P × F N √ 

(T P + F P )(T P + F N)(T N + F P )(T N + F N) 
(3) 

An additional score, the area under the receiver operating char-

cteristic (ROC) curve (AUC) is also obtained for the classifier. The

OC curve (see Fig. 7 ) is a curve created by plotting the true posi-

ive rate (TPR or sensitivity) against the false positive rate (FPR or

 - specificity). 
. Results and discussion 

It is important to highlight the type of problem the protein-

eptide binding site prediction case is. Although the problem can

e dealt with as binary classification of the two classes (binding

nd non-binding sites for each residue in the protein sequence),

t must be realized that the need to classify in the first place

s to be able to correctly pick out the actual binding sites from

he non-binding sites. Analyzing our model (Visual) with the un-

een data set TS125, we have found that it is able to predict

he class of each residue in a protein sequence with the high-

st sensitivity compared to any other tool. It is apparent that the

rotein-peptide binding sites predicted by Visual are quite close

o the binding sites revealed by the experimental method (see

ig. 6 ). Application areas, such as drug design, require reliable de-

ection of binding sites. Visual is an attempt to improve this detec-

ion rate, and the results are positive with possibilities of further

mprovement. 

Since about 94.4% of the residues do not bind with peptides

nd only 5.6% of them do, using the accuracy of the predictor as

 basis for judging performance is misleading. The goal is to cor-

ectly classify the actual binding sites (which are only 5.6% of the
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Fig. 5. Flow diagram of the processes involved in (a). transforming the protein-binding data, (b). training CNN to achieve optimal internal state and (c). testing the final 

model using the test set TS125. 
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t

data set) as such while keeping the number of falsely classified

binding sites as low as possible. This trade-off between the true-

positive and false-positive rates is depicted in the Receiver Oper-

ating Characteristics (ROC) curve shown in Fig. 7 . A method that

predicts peptide binding sites randomly (poor predictor) will have

a linear diagonal curve (dashed line) and the area under the ROC

curve (AUC) will be 0.5, whereas the best predictor will be higher

and have AUC = 1. Visual achieves AUC = 0.73, which is higher

than all other methods except one, SPRINT-Str ( Taherzadeh et al.,
017 ) (however, this method shows extremely low detection rate

f peptide binding sites). Methods published previously have gen-

rally shown very low rates of detecting actual binding sites cor-

ectly. The highest sensitivity so far was by the method Peptimap

hich was able to correctly detect only 32% of the binding sites

n the same test set TS125. Our method is able to correctly de-

ect 67% of binding sites in the test set TS125, the highest TPR so

ar achieved. Table 1 shows a comparison of the results of the top

ools available for this problem. 
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Fig. 6. (a) shows the amino acid sequence of the protein 4l3oA. The sequence has been split into segments (55–125, 126–196, ...) to fit on the page. The upper row shows 

the actual peptide binding sites (magenta) while the lower row shows the peptide binding sites (magenta) as predicted by our method. (b) and (c) show computer-generated 

images of the protein 4l3oA, where (b) shows he actual binding sites in magenta and (c) shows the predicted binding sites in magenta. 

Fig. 7. ROC curve for this method, Visual, on the independent test set TS125. The 

curve portrays the performance of the method by plotting the True Positive Rate 

against the False Positive Rate. 

4

 

n  

i  

p  

fi  

i  

F  

Table 1 

Comparison of different methods on the TS125 test set. The results stated 

were obtained from Taherzadeh et al. (2017) , where TS125 was used for com- 

parison. 

Methods SEN SPE MCC AUC 

SPRINT-Str Taherzadeh et al. (2017) 0.24 0.98 0.29 0.78 

SPRINT Taherzadeh et al. (2016) 0.21 0.96 0.20 0.68 

Peptimap Bohnuud et al. (2017) 0.32 0.95 0.27 0.63 

Pepsite Petsalaki et al. (2009) 0.18 0.97 0.20 0.61 

PinUp Liang et al. (2006) 0.24 0.91 0.13 0.58 

VisGrid Li et al. (2008) 0.24 0.93 0.15 0.63 

Visual proposed method 0.67 0.68 0.17 0.73 

g  

D  

p  

b  

t  

c  

e  

p

5

 

b  

c  

t  

a  

t  

c  

d  
. Future work 

There is room for improvement and especially in reducing the

umber of non-binding residues that get falsely classified as bind-

ng sites. The improvement may come about with better data pre-

rocessing so that the image that is fed into the CNN for classi-

cation is richer in specific information about the residue. First

mprovement may be achieved by arranging the protein features

 1 , . . . , F 6 in an optimized order. More sophisticated feature en-
ineering and deeper CNN topology, such as recently published

eepInsight ( Sharma et al., 2019 ), may produce better protein-

eptide binding site prediction results. Secondly, improvement may

e achieved by using more advanced computing environment such

hat window size greater than 7, and various other CNN topologies

an be experimented with. Additionally, more work can be done in

mploying other types of deep-learning methods, such as RNN, to

redict peptide binding sites in proteins. 

. Conclusion 

A deep learning method, Visual, that can predict the peptide

inding sites in a protein was proposed. The method is a 2 layer

onvolutional neural network that uses an image-like representa-

ion of the constituent amino acids to detect the binding sites in

 protein. The binding site detection rate of Visual (67%) is over

wice as high as previously published methods (32%). It can be

oncluded that protein data can be transformed into image-like

ata usable by CNN methods, and that CNN can be successfully
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optimized to achieve better results compared to the current meth-

ods. 
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The code for Visual can be found on GitHub via this link 

https://github.com/WafaaWardah/Visual Visual . 

Funding 

This research did not receive any specific grant from funding

agencies in the public, commercial, or not-for-profit sectors. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.jtbi.2020.110278 . 

References 

Altschul, S.F. , Madden, T.L. , Schffer, A .A . , Zhang, J. , Zhang, Z. , Miller, W. , Lipman, D.J. ,

1997. Gapped blast and psi-blast: a new generation of protein database search
programs. Nucleic Acids Res. 25, 3389–3402 . 

Berman, H., Henrick, K., Nakamura, H., 2003. Announcing the worldwide protein
data bank. Nat. Struct. Mol. Biol. 10, 1545–9985. doi: 10.1038/nsb1203-980 . 

Berman, H.M. , Westbrook, J. , Feng, Z. , Gilliland, G. , Bhat, T.N. , Weissig, H. ,

Shindyalov, I.N. , Bourne, P.E. , 2016. The protein data bank. Nucleic Acids Res 28,
235–242 . 

Biegert, A., Mayer, C., Remmert, M., Soding, J., Lupas, A.N., 2006. The MPI bioinfor-
matics toolkit for protein sequence analysis. Nucleic Acids Res. 34. doi: 10.1093/

nar/gkl217 . 
Bohnuud, T. , Jones, G. , Schueler-Furman, O. , Kozakov, D. , 2017. Detection of pep-

tide-binding sites on protein surfaces using the peptimap server. Methods Mol.

Biol. 1561, 11–20 . 
Breiman, L., 2001. Random forests. Mach. Learn. 45 (1). doi: 10.1023/A:

1010933404324 . 
Calderone, A. , Castagnoli, L. , Cesareni, G. , 2013. Mentha: a resource for browsing

integrated protein-interaction networks. Nat. Methods 10, 690–691 . 
Dhole, K. , Singh, G. , Pai, P.P. , Mondal, S. , 2014. Sequence-based prediction of pro-

tein–protein interaction sites with L1-logreg classifier. J. Theor. Biol. 348, 47–54 .

Guo, L., Luo, C., Zhu, S., 2013. MHC2SKpan: a novel kernel based approach for pan-
specific MHC class II peptide binding prediction. BMC Genomics 14 (5), S11.

doi: 10.1186/1471-2164-14-S5-S11 . 
Hamelryck, T. , 2005. An amino acid has two sides: a new 2d measure provides a

different view of solvent exposure. Proteins Struct. Funct. Bioinf. 59 (1), 38–48 . 
Heffernan, R. , Paliwal, K. , Lyons, J. , Dehzangi, A. , Sharma, A. , Wang, J. , Sattar, A. ,

Yang, Y. , Zhou, Y. , 2015. Improving prediction of secondary structure, local back-

bone angles, and solvent accessible surface area of proteins by iterative deep
learning. Sci. Rep. 5 (11476) . 

Henikoff, S., Henikoff, J.G., 1992. Amino acid substitution matrices from protein
blocks. Proc. Natl. Acad. Sci. 89 (22), 10915–10919. doi: 10.1073/pnas.89.22.10915 .

Hou, T., Xu, Z., Zhang, W., McLaughlin, W.A., Case, D.A., Xu, Y., Wang, W., 2009. Char-
acterization of domain-peptide interaction interface: a generic structure-based

model to decipher the binding specificity of sh3 domains. Mol. Cell. Proteomics

8 (4), 639–649. doi: 10.1074/mcp.M80 0450-MCP20 0 . 
Hu, J., Liu, Z., 2017. DeepMHC: deep convolutional neural networks for high-

performance peptide-MHC binding affinity prediction. doi: 10.1101/239236 . 
Janin, J., 1999. Wet and dry interfaces: the role of solvent in protein–protein

and protein–DNA recognition. Structure 7, 277–279. doi: 10.1016/S0969-2126(00)
88333-1 . 

Jimenez, J., Doerr, S., Martinez-Rosell, G., Rose, A.S., De Fabritiis, G., 2017. DeepSite:
protein-binding site predictor using 3D-convolutional neural networks. Bioinfor-

matics 33 (19), 3036–3042. doi: 10.1093/bioinformatics/btx350 . 

Kawashima, S., Ogata, H., Kanehisa, M., 1999. AAindex: amino acid index database.
Nucleic Acids Res. 27 (1), 368–369. doi: 10.1093/nar/27.1.368 . 

Kingma, D. P., Ba, J., 2014. Adam: a method for stochastic optimization. CoRR abs/
1412.6980 . 

Kundu, K., Costa, F., Huber, M., Reth, M., Backofen, R., 2013. Semi-supervised predic-
tion of sh2-peptide interactions from imbalanced high-throughput data. PLoS

ONE 8 (5), 1–15. doi: 10.1371/journal.pone.0062732 . 

Kuzmanov, U. , Emili, A. , 2013. Protein-protein interaction networks: probing disease
mechanisms using model systems.. Genome Med. 5, 37 . 

Li, B. , Turuvekere, S. , Agrawal, M. , La, D. , Ramani, K. , Kihara, D. , 2008. Characteriza-
tion of local geometry of protein surfaces with the visibility criterion.. Proteins

670–683 . 
iang, S. , Zhang, C. , Liu, E. , Zhou, Y. , 2006. Protein binding site prediction using an
empirical scoring function.. Nucleic Acids Res. 3698–3707 . 

Murakami, Y., Mizuguchi, K., 2010. Applying the naive bayes classifier with kernel
density estimation to the prediction of protein-protein interaction sites.. Bioin-

formatics 26 (15), 1841–1848. doi: 10.1093/bioinformatics/btq302 . 
eduva, V., Linding, R., Su-Angrand, I., Stark, A., Masi, F.d., Gibson, T.J., Lewis, J.,

Serrano, L., Russell, R.B., 2005. Systematic discovery of new recognition peptides
mediating protein interaction networks. PLoS Biol. 3 (12). doi: 10.1371/journal.

pbio.0030405 . 

ibbe, R.K. , Chowdhury, S.A. , Koyuturk, M. , Ewing, R. , Chance, M.R. , 2011. Pro-
tein-protein interaction networks and subnetworks in the biology of disease..

Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 357–367 . 
Niv, M.Y., Weinstein, H., 2005. A flexible docking procedure for the exploration

of peptide binding selectivity to known structures and homology models of
PDZ domains. Journal of the American Chemical Society 127 (40), 14072–14079.

doi: 10.1021/ja054195s . PMID: 16201829 

eng, Z., Kurgan, L., 2015. High-throughput prediction of rna, dna and protein bind-
ing regions mediated by intrinsic disorder. doi: 10.1093/nar/gkv585 . 

etsalaki, E., Stark, A., Garc ȡ a-Urdiales, E., Russell, R.B., 2009. Accurate prediction of
peptide binding sites on protein surfaces. PLoS Comput. Biol. 5 (3), 1–10. doi: 10.

1371/journal.pcbi.10 0 0335 . 
Porollo, A. , Meller, J. , 2007. Prediction-based fingerprints of protein-protein interac-

tions.. Proteins 66 (3), 630–645 . 

PyTorch PyTorch. An open source machine learning framework that accelerates the
path from research prototyping to production deployment. https://pytorch.org/

retrieved on 15/3/2020. 
oche, D.B., Brackenridge, D.A., McGuffin, L.J., 2015. Proteins and their interacting

partners: an introduction to protein-ligand binding site prediction methods.. Int.
J. Mol. Sci. 16 (12), 29829–29842. doi: 10.3390/ijms161226202 . 

uder, S., 2016. An overview of gradient descent optimization algorithms. abs/1609.

04747 . 
harma, A. , Vans, E. , Shigemizu, D. , Boroevich, K.A. , Tsunoda, T. , 2019. DeepInsight: a

methodology to transform a non-image data to an image for convolution neural
network architecture. Sci. Rep. 9 . 

ingh, G. , Dhole, K. , Pai, P. , Mondal, S. , 2014. SPRINGS: Prediction of protein-protein
interaction sites using artificial neural networks. J. Proteomics Computat. Biol. 1

(1), 7 . 

noek, J. , Larochelle, H. , Adams, R.P. , 2012. Practical bayesian optimization of ma-
chine learning algorithms. In: Proceedings of the 25th International Conference

on Neural Information Processing Systems, vol. 2, pp. 2951–2959 . 
aherzadeh, G. , Yang, Y. , Zhang, T. , Liew, A.W.-C. , Zhou, Y. , 2016. Sequence-based pre-

diction of protein peptide binding sites using support vector machine. Journal
of Computational Chemistry . 0.1002/jcc.24314. 

aherzadeh, G. , Zhou, Y. , Liew, A.W.-C. , Yang, Y. , 2017. Structure-based prediction of

protein-peptide binding regions using random forest. Structural Bioinformatics
1–8 . 0.1093/bioinformatics/btx614. 

oussaint, N.C., Widmer, C., Kohlbacher, O., Ratsch, G., 2010. Exploiting physico-
chemical properties in string kernels. BMC Bioinform. 11 (8), S7. doi: 10.1186/

1471-2105-11-S8-S7 . 
apnik, V. , 20 0 0. The Nature of Statistical Learning Theory. Springer-Verlag . 

isual Github repository. The source code is accessible at https://github.com/
WafaaWardah/Visual . 

Vlieghe, P. , Lisowski, V. , Martinez, J. , Khrestchatisky, M. , 2009. Synthetic therapeutic

peptides: science and market. Drug Discov. Today 15 (1/2) . 
Wagner, M. , Adamczak, R. , Porollo, A. , Meller, J. , 2005. Linear regression models for

solvent accessibility prediction in proteins.. J. Comput. Biol. 12, 355–369 . 
Wei, Z. , Han, K. , Yang, J. , Shen, H. , Yu, D. , 2016. Protein–Protein interaction sites pre-

diction by ensembling SVM and sample-weighted random forests. Neurocom-
puting 193, 201–212 . 

Wei, Z., Yang, J., Shen, H., Yu, D., 2015. A cascade random forests algorithm for pre-

dicting protein-protein interaction sites. IEEE Trans. Nanobiosci. 14 (7), 746–760.
doi: 10.1109/TNB.2015.2475359 . 

estermarck, J., Ivaska, J., Corthals, G.L., 2013. Identification of protein interactions
involved in cellular signaling.. Mol. Cell. Proteomics 12, 1752–1763. doi: 10.1074/

mcp.R113.027771 . 
enarios, I., Eisenberg, D., 2001. Protein interaction databases. Curr. Opin. Biotech-

nol. 12 (4), 334–339. doi: 10.1016/S0958-1669(0 0)0 0224-X . 

an, J. , Friedrich, S. , Kurgan, L. , 2016. A comprehensive comparative review of se-
quence-based predictors of dna- and rna-binding residues.. Brief Bioinform. 17,

88–105 . 
ang, J. , Roy, A. , Zhang, Y. , 2012. BioLiP: a semi-manually curated database for

biologically relevant ligand-protein interactions. Nucleic Acids Res. 41, 1096–
1103 . 

ang, J., Roy, A., Zhang, Y., 2013. BioLiP: a semi-manually curated database for bi-

ologically relevant ligand–protein interactions. Nucleic Acids Res. 41, D1096–
D1103. doi: 10.1093/nar/gks966 . 

ang, Y. , Heffernan, R. , Paliwal, K. , Lyons, J. , Dehzangi, A. , Sharma, A. , Wang, J. , Sat-
tar, A. , Zhou, Y. , 2014. SPIDER2: a package to predict secondary structure, acces-

sible surface area, and main-chain torsional angles by deep neural networks. In:
Prediction of Protein Secondary Structure, pp. 55–63 . 

https://github.com/WafaaWardah/Visual
https://doi.org/10.1016/j.jtbi.2020.110278
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0001
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0001
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0001
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0001
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0001
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0001
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0001
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0001
https://doi.org/10.1038/nsb1203-980
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0003
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0003
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0003
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0003
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0003
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0003
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0003
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0003
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0003
https://doi.org/10.1093/nar/gkl217
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0005
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0005
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0005
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0005
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0005
https://doi.org/10.1023/A:1010933404324
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0007
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0007
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0007
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0007
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0008
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0008
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0008
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0008
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0008
https://doi.org/10.1186/1471-2164-14-S5-S11
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0010
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0010
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0011
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0011
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0011
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0011
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0011
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0011
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0011
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0011
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0011
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0011
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1074/mcp.M800450-MCP200
https://doi.org/10.1101/239236
https://doi.org/10.1016/S0969-2126(00)88333-1
https://doi.org/10.1093/bioinformatics/btx350
https://doi.org/10.1093/nar/27.1.368
http://arxiv.org/abs/1412.6980
https://doi.org/10.1371/journal.pone.0062732
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0018
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0018
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0018
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0019
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0019
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0019
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0019
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0019
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0019
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0019
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0020
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0020
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0020
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0020
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0020
https://doi.org/10.1093/bioinformatics/btq302
https://doi.org/10.1371/journal.pbio.0030405
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0023
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0023
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0023
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0023
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0023
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0023
https://doi.org/10.1021/ja054195s
http://doi.org/10.1093/nar/gkv585
https://doi.org/10.1371/journal.pcbi.1000335
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0026
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0026
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0026
https://pytorch.org/
https://doi.org/10.3390/ijms161226202
http://arxiv.org/abs/1609.04747
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0028
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0028
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0028
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0028
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0028
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0028
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0029
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0029
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0029
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0029
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0029
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0030
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0030
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0030
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0030
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0031
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0031
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0031
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0031
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0031
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0031
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0031
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0032
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0032
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0032
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0032
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0032
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0032
https://doi.org/10.1186/1471-2105-11-S8-S7
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0034
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0034
https://github.com/WafaaWardah/Visual
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0035
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0035
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0035
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0035
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0035
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0036
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0036
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0036
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0036
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0036
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0037
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0037
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0037
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0037
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0037
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0037
https://doi.org/10.1109/TNB.2015.2475359
https://doi.org/10.1074/mcp.R113.027771
https://doi.org/10.1016/S0958-1669(00)00224-X
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0041
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0041
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0041
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0041
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0042
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0042
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0042
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0042
https://doi.org/10.1093/nar/gks966
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0044
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0044
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0044
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0044
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0044
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0044
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0044
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0044
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0044
http://refhub.elsevier.com/S0022-5193(20)30133-8/sbref0044

	Predicting protein-peptide binding sites with a deep convolutional neural network
	1 Introduction
	2 Materials and methods
	2.1 Dataset
	2.2 Features
	2.3 Method
	2.3.1 Input transformation
	Feature vector
	Windowed segment
	2.3.2 Convolutional neural network - CNN
	2.3.3 Bayesian optimization of CNN hyperparameters
	2.3.4 Performance evaluation


	3 Results and discussion
	4 Future work
	5 Conclusion
	Availability of codes
	Funding
	Supplementary material
	References


