JOURNAL OF THEORETICAL BIOLOGY | 卷:257 |
A quantitative examination of the role of cargo-exerted forces in axonal transport | |
Article | |
Lee, Robert H.1  | |
[1] Georgia Inst Technol, Lab Neuroengn, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA | |
关键词: Neurofilament; Axoplasm; Microtubule; Computational model; Cooperative transport; Drag force; | |
DOI : 10.1016/j.jtbi.2008.12.011 | |
来源: Elsevier | |
【 摘 要 】
Axonal transport, via molecular motors kinesin and dynein, is a critical process in supplying the necessary constituents to maintain normal neuronal function. In this study, we predict the role of cooperativity by motors of the same polarity across the entire spectrum of physiological axonal transport. That is, we examined how the number of motors, either kinesin or dynein, working together to move a cargo, results in the experimentally determined velocity profiles seen in fast and slow anterograde and retrograde transport. We quantified the physiological forces exerted on a motor by a cargo as a function of cargo size, transport velocity, and transport type. Our results show that the force exerted by our base case neurofilament (D-NF=10nm, L-NF=1.6 mu m) is similar to 1.25pN at 600nm/s; additionally, the force exerted by our base case organelle (D-org = 1 mu m) at 1000 nm/s is similar to 5.7 pN. Our results indicate that while a single motor can independently carry an average cargo, cooperativity is required to produce the experimental velocity profiles for fast transport. However, no cooperativity, is required to produce the slow transport velocity profiles; thus, a single dynein or kinesin can carry the average neurofilament retrogradely or anterogradely, respectively. The potential role cooperativity may play in the hypothesized mechanisms of motoneuron transport diseases such as amyotrophic lateral sclerosis (ALS) is discussed. (C) 2008 Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jtbi_2008_12_011.pdf | 331KB | download |