期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:123
Nonparametric estimation of the local Hurst function of multifractional Gaussian processes
Article
Bardet, Jean-Marc1  Surgailis, Donatas2 
[1] Univ Paris 01, SAMM, F-75634 Paris, France
[2] Inst Math & Informat, Vilnius, Lithuania
关键词: Nonparametric estimators;    Hurst function;    Tangent process;    Multifractional Brownian motion;    Gaussian process;    Central limit theorem;   
DOI  :  10.1016/j.spa.2012.11.009
来源: Elsevier
PDF
【 摘 要 】

A new nonparametric estimator of the local Hurst function of a multifractional Gaussian process based on the increment ratio (IR) statistic is defined. In a general frame, the point-wise and uniform weak and strong consistency and a multidimensional central limit theorem for this estimator are established. Similar results are obtained for a refinement of the generalized quadratic variations (QV) estimator. The example of the multifractional Brownian motion is studied in detail. A simulation study is included showing that the IR-estimator is more accurate than the QV-estimator. (C) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2012_11_009.pdf 633KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次