期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:130
Stochastic recursions: Between Kesten's and Grincevicius-Grey's assumptions
Article
Damek, Ewa1  Kolodziejek, Bartosz2 
[1] Wroclaw Univ, Inst Math, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[2] Warsaw Univ Technol, Fac Math & Informat Sci, Koszykowa 75, PL-00662 Warsaw, Poland
关键词: Perturbed random walk;    Perpetuity;    Regular variation;    Renewal theory;   
DOI  :  10.1016/j.spa.2019.05.016
来源: Elsevier
PDF
【 摘 要 】

We study the stochastic recursion X-n = Psi(n)(Xn-1), where (Psi(n))(n >= 1) is a sequence of i.i.d. random Lipschitz mappings close to the random affine transformation x bar right arrow Ax + B. We describe the tail behaviour of the stationary solution X under the assumption that there exists alpha > 0 such that E vertical bar A vertical bar(alpha) = 1 and the tail of B is regularly varying with index -alpha < 0. We also find the second order asymptotics of the tail of X when Psi(x) = Ax + B. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2019_05_016.pdf 481KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次