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Abstract

We study the stochastic recursion Xn = Ψn(Xn−1), where (Ψn)n≥1 is a sequence of i.i.d. random
Lipschitz mappings close to the random affine transformation x ↦→ Ax + B. We describe the tail
behaviour of the stationary solution X under the assumption that there exists α > 0 such that E|A|

α
= 1

and the tail of B is regularly varying with index −α < 0. We also find the second order asymptotics
of the tail of X when Ψ (x) = Ax + B.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Results and motivation

Let (Ψn)n≥1 be a sequence of i.i.d. (independent identically distributed) random Lipschitz
real mappings. Given X0 independent of (Ψn)n≥1 we study stochastic recursions

Xn = Ψn(Xn−1), n ≥ 1 (1)

known also as iterated function systems (IFS). Beginning from the early nineties IFS mod-
elled on Lipschitz functions attracted a lot of attention [2,3,7,15,16,18,23,32]. Under mild
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Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.05.016.

2 E. Damek and B. Kołodziejek / Stochastic Processes and their Applications xxx (xxxx) xxx

contractivity hypotheses, Xn converges in law to a random variable X satisfying (in distribution)

X d
= Ψ (X ), X and Ψ are independent, (2)

where Ψ is a generic element of the sequence (Ψn)n≥1 [15,18]. However, to describe the tail
of X some further assumptions are needed. Usually one assumes that Ψ is close to an affine
mapping or, more precisely, that for every x ∈ R

Ax + B1 ≤ Ψ (x) ≤ Ax + B, a.s. (3)

with A, B and B1 nice enough. The reason is that if Ψ (x) = Ax + B, then the tail of stationary
distribution is thoroughly described under various assumptions on A and B, see Section 1.3.

In the present paper we consider two kinds of approximations: (3) and the case when
Ψ : R → R is a random Lipschitz mapping satisfying for all x ≥ 0

max{Ax, B1} ≤ Ψ (x) ≤ Ax + B, a.s. (4)

Under suitable conditions on A, B and B1 we obtain asymptotics of P(X > x) as x → ∞ in
both cases, see Theorems 1.3 and 1.4.

There are a number of the papers on the subject [2,8,13,17,32], where the IFS are modelled
on the assumptions needed to handle the tail in the affine recursion. Typical conditions exhibit
existence of certain moments of A and B or regular behaviour of their tails and in all the
settings considered up to now either A or B has basically the ultimate influence on the tail,
not both. A short overview is given in Section 1.3.

We study an opposite situation. For the time being, we assume A ≥ 0 a.s., EAα = 1 and
B, B1 have right tails regularly varying with index −α for some α > 0 such that E|B|

α,E|B1|
α

are infinite.1 Our starting point is the tail behaviour of Xmax being the stationary solution to
“so called” extremal recursion, corresponding to Ψ (x) = max{Ax, B}. Then

xαP(Xmax > x) ∼
1
ρ

∫ x

0

L(t)
t

dt as x → ∞, (5)

see [14], where L(x) = xαP(B > x) is assumed to be slowly varying function, ∼ is defined in
(7) and ρ is as in (A-2).2 More precisely, if conditions (A-1), (A-2), (B-1), (AB-1) defined in
Theorem 1.1 hold then (5) follows and the right hand side of (5) is due to both the behaviour
of B and of an appropriate renewal measure determined by A. Moreover,

∫ x
0 L(t)t−1dt/L(x)

tends to infinity as x → ∞ and x ↦→
∫ x

0 L(t)t−1dt is again slowly varying.
The next step is to prove a result in the spirit of (5) for Ψ (x) = Ax + B, see Theorem 1.1.

While the behaviour of the right tails of stationary distribution of the extremal and the affine
recursion turn out to be the same, the asymptotics

xαP(X > x) ∼
1
ρ

∫ x

0

L(t)
t

dt

of X corresponding to (4) is a straightforward conclusion, Theorem 1.3 in Section 1.4. Neither
the affine recursion nor iterated function systems have been considered under these assumptions
and the appearance of the function

L̃(x) =

∫ x

0

L(t)
t

dt (6)

is probably the most interesting phenomenon here. For the IFS satisfying (3) we prove that
both P(X > x) and P(X < −x) have similar behaviour for large x , Theorem 1.4.

1 If P(B > x) ∼ x−αL(x) then E|B|
α may be finite or infinite depending on the slowly varying function L .

2 Note that there is no issue with integrability of L(t)/t near 0+ because L(t) ≤ tα for t > 0.
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1.2. Perpetuities

Before we formulate precisely the results for Lipschitz iterations let us discuss solutions to
the affine recursion with Ψ (x) = Ax + B. Such solutions, if exist, are called perpetuities and
throughout the paper they will be denoted by R. It exists and it is unique if E log |A| < 0 and
E log+

|B| < ∞ which is guaranteed by assumptions of Theorem 1.1. For two functions f, g
we write

f (x) ∼ g(x) if lim
x→∞

f (x)/g(x) = 1. (7)

Recall that L is slowly varying if L(x) ∼ L(λx) for any λ > 0. Let B+ = max{B, 0} and
B− = max{−B, 0}. We have the following theorem

Theorem 1.1. Suppose that

(A-1) A ≥ 0 a.s. and the law of log A given A > 0 is non-arithmetic,
(A-2) there exists α > 0 such that EAα = 1, ρ := EAα log A < ∞,
(B-1) L(x) := xαP(B > x) is slowly varying, EBα

+
= ∞ and EBα−ε

− < ∞ for all ε ∈ (0, α),
(AB-1) EAηBα−η

+ < ∞ for some η ∈ (0, α) ∩ (0, 1].

Then

xαP(R > x) ∼
1
ρ

∫ x

0

L(t)
t

dt (8)

We see that the behaviour of P(R > x) as x → ∞ is described in terms of the behaviour
of the tail of B+. Accordingly, the behaviour of P(R < −x) depends on the tail of B−. To see
this, let us denote B1 = −B. Then, R1 = −R satisfies

R1
d
= AR1 + B1, R1 and (A, B1) are independent.

and the right tail of R1 is the same as the left tail of R. We thus obtain the following result.

Corollary 1.2. Assume (A-1) and (A-2) and

(B-2) L1(x) := xαP(B < −x) is slowly varying, EBα
−

= ∞ and EBα−ε
+ < ∞ for all

ε ∈ (0, α),
(AB-2) EAηBα−η

− < ∞ for some η ∈ (0, α) ∩ (0, 1],

then

xαP(R < −x) ∼
1
ρ

∫ x

0

L1(t)
t

dt. (9)

Finally, if all the above assumptions and additionally (B-1), (AB-1) are satisfied, then we have
both (8) and (9) with possibly different slowly varying functions L and L1.

To obtain tail asymptotics one usually applies an appropriate renewal theorem and so do we.
However, what we need goes beyond existing results and we prove a new one, Theorem 3.1.
Note that under (A-1) and (A-2)

ρ = EAα log A

is strictly positive. Indeed, consider f (β) := EAβ . Since f (0) = 1 = f (α), f is convex,
we have f ′(α) = ρ > 0. Secondly, observe that, under E|B|

α−η < ∞, (8) depends only on
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the regular behaviour of the right tail of B+ and so we may obtain different asymptotics for
P(R > x) and P(R < −x) if it is so for B. It follows from (36) that∫ x

0

L(t)
t

dt ∼
1
α
EBα

+
1B≤x .

and so the right hand sides of (8) and (9) tend to ∞ when x → ∞. Finally, conditions
(AB-1) and (AB-2) require a comment. If EAα+ε < ∞ for some ε > 0 then they both are
satisfied by Hölder inequality. But much less is needed. Namely, if EAαW (A) < ∞, where
W (x) = max{L̃(x), log x} then (AB-1) and (AB-2) hold, see Appendix.

Next we study the second order asymptotics of the right tail of R. Assuming more regularity
of log A, we prove that⏐⏐⏐xαP(R > x) −

1
ρ

∫ x

0

L(t)
t

dt − C
⏐⏐⏐ = O(L(x)) + o(1), as x → ∞, (10)

for some constant C ; see Theorem 4.4. Notice that either L(x) or 1 may dominate the right
hand side of (10). (10) holds when the renewal measure determined by log A satisfies

H((x, x + h]) ≤ c max{hβ, h}

for some β ∈ (0, 1) and for all x, h ≥ 0 — see Lemma 2.1. In view of [19] and [11] it is not
much of a surprise that stronger assumptions on H are needed to describe the second order
asymptotics of the tail of a perpetuity.

Finally, we develop a new approach to deal with signed A. We show how to reduce “signed
A” to “non-negative A” (see Theorem 5.4(i)) and we apply our result to the case when
E|A|

α
= 1. The method is quite general and it is applicable beyond our particular assumptions.

1.3. Previous results on perpetuities

P(R > x) converges to zero when x tends to infinity and a natural problem consists of
describing the rate at which this happens. Depending on the assumptions on (A, B) we may
obtain light-tailed R (all the moments exist) or a heavy tailed R (certain moments of |R| are
infinite). The first case occurs when P(|A| ≤ 1) = 1 and B has the moment generating function
in some neighbourhood of the origin, see [12,20,24,30,31,33].

The second case is when P(|A| > 1) > 0 with E log |A| < 0 and |A|, |B| have some positive
moments. Then the tail behaviour of R may be determined by A or B alone, or by both of them.
The first case happens when the tail of B is regularly varying with index −α < 0, E|A|

α < 1
and E|A|

α+ε < ∞ for some ε > 0. Then

P(R > x) ∼ c P(B > x), (11)

see [21,22]. Also it may happen that

P(R > x) ∼ c P(A > x)

when E|A|
α < 1 but P(|B| > x) = O(P(A > x)), see [13]. When E|A|

α
= 1, E|B|

α < ∞,
E|A|

a log+
|A| < ∞ and the law of log |A| given {A ̸= 0} is non-arithmetic, then [19,22,26]

P(R > x) ∼ c x−α (12)

and it is A that plays the main role. When E|A|
a log+

|A| = ∞ an extra slowly varying function
l appears in (12), i.e.

P(R > x) ∼ c l(x)x−α. (13)
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(13) was proved by [28] for A ≥ 0 but applying our approach to signed A (see Section 5) we
may conclude (13) also there.3

In view of all that it is natural to go a step further and to ask what happens when at the
same time A and B contribute significantly to the tail in the sense of (A-2) and (B-1).

1.4. Lipschitz iterations

In this section we state the results for IFS and we show how do they follow from (5)
and Theorem 1.1. We assume that Ψ satisfies conditions sufficient for existence of stationary
solution. Let L(Ψ ), L(Ψn,1) be the Lipschitz constants of Ψ , Ψn,1 = Ψn ◦ · · · ◦Ψ1 respectively.
If E log+ L(Ψ ) < ∞, E log+

|Ψ (0)| < ∞ and

lim
n→∞

1
n

log L(Ψn,1) < 0 a.s. (14)

then Xn converges in distribution to a random variable X , which does not depend on X0 and
satisfies (2).

For slowly varying functions Lr and L1,r let us denote

L̃r (x) =

∫ x

0

Lr (t)
t

dt and L̃1,r (x) =

∫ x

0

L1,r (t)
t

dt.

Theorem 1.3. Suppose that (A-1), (A-2), (B-1) and (AB-1) are satisfied both for B and B1
with L = Lr and L = L1,r respectively. Let Ψ be such that

max{Ax, B1} ≤ Ψ (x) ≤ Ax + B, a.s., x ≥ 0. (15)

Then for every ε > 0 and x sufficiently large

1 − ε

ρ
L̃1,r (x) ≤ xαP(X > x) ≤

1 + ε

ρ
L̃r (x). (16)

Particularly, if L̃r (x) ∼ L̃1,r (x) then

xαP(X > x) ∼
1
ρ

L̃r (x). (17)

Theorem 1.4. If a function Ψ satisfies

Ax + B1 ≤ Ψ (x) ≤ Ax + B, a.s., x ∈ R, (18)

then under the assumptions of Theorem 1.3, assertions (16) and (17) hold true.
If (A-1), (A-2), (B-2) and (AB-2) hold both for B and B1 then we have analogous

conclusions for P(X < −x).

Theorems 1.3 and 1.4 follow quickly from Theorem 1.1 and (5) (i.e. Theorem 4.2 of [14]).
To see this let us consider Theorem 1.4. Let

Rn = An Rn−1 + Bn, Rn,1 = An Rn−1,1 + Bn,1

with R0 = R0,1 = X0. Then for every n,

Rn,1 ≤ Xn ≤ Rn a.s.

3 For the results in the case when max{|A|, |B|} does not have positive moments we refer to [17].
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and so

R1 ≤ X ≤ R, a.s

where R d
= AR + B with (A, B) independent of R and similarly for (A1, B1, R1). Hence

xαP(X > x)/L̃r (x) ≤ xαP(R > x)/L̃r (x).

Letting x → ∞, we obtain

lim sup
x→∞

xαP(X > x)/L̃r (x) ≤ lim
x→∞

xαP(R > x)/L̃r (x) =
1
ρ
,

which implies the right hand side of (16). The left hand side is obtained analogously. Clearly
L̃r (x) ∼ L̃1,r (x) implies (17). In the same way we proceed for the proof of Theorem 1.3.

Let us comment on stochastic iterations that fall under the assumption of Theorem 1.3.
Subtracting Ax from (15) we arrive at

(B1 − Ax)+ ≤ Θ(x) ≤ B, a.s., x ≥ 0,

where we have defined Θ(x) := Ψ (x) − Ax . Analysing this condition geometrically, we see
that Ψ (x) = Ax + Θ(x) satisfies (15) if for each x ≥ 0, the value of Θ(x) belongs (a.s.) to
patterned part of the figure below. If Θ(x) ∈ [B1, B] a.s. for each x , then Ψ satisfies (18).
Moreover, Θ may be chosen in the way that E log L(Θ) < 0 which implies (14).

0 −B1/A
0

B1

B

x

1.5. Structure of the paper

Theorem 1.1 is proved in Section 4.1. Section 4.2. is devoted to the second order asymp-
totics. Before, we need some preliminaries on the renewal theory. A renewal theorem which
is the basic tool is formulated in Section 3 and proved in the last section. Section 2.3 contains
material needed only for the second order asymptotics. We deal with general A in Section 5.
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2. Preliminaries

2.1. Regular variation

A measurable function L : (0,∞) → (0,∞) is called slowly varying, (denoted L ∈ R(0)),
if for all λ > 0,

lim
x→∞

L(λx)
L(x)

= 1. (19)

For ρ ∈ R we write R(ρ) for the class of regularly varying functions with index ρ, which
consists of functions f of the form f (x) = xρL(x) for some L ∈ R(0).

If L ∈ R(0) is bounded away from 0 and ∞ on every compact subset of [0,∞), then for
any δ > 0 there exists A = A(δ) > 1 such that (Potter’s Theorem, see e.g [10], Appendix B)

L(y)
L(x)

≤ A max

{( y
x

)δ
,

(
x
y

)δ}
, x, y > 0. (20)

Assume that L ∈ R(0) is locally bounded on (x0,∞) for some x0 > 0. Then, for α > 0
one has∫ x

x0

tα
L(t)

t
dt ∼ α−1xαL(x) (21)

and this result remains true also forα = 0in the sense that∫ x
x0

L(t)
t dt

L(x)
→ ∞ as x → ∞, (22)

[5, Proposition 1.5.9a]. Define L̃ x0 (x) :=
∫ x

x0
t−1L(t)dt . Function L̃ x0 is sometimes called de

Haan function. It is again slowly varying and has the property that for any λ > 0,

L̃ x0 (λx) − L̃ x0 (x)
L(x)

=

∫ λ

1

L(xt)
L(x)

dt
t

→ log λ, (23)

To prove it, use the fact that convergence in (19) is locally uniform [5, Theorem 1.5.2].

2.2. Renewal theory

Let (Zk)k≥1 be the sequence of independent copies of random variable Z with EZ > 0. We
write Sn = Z1 + · · · + Zn for n ∈ N and S0 = 0. The measure H defined on Borel sets B(R)
by

H(B) :=

∞∑
n=0

P(Sn ∈ B), B ∈ B(R)

is called the renewal measure of (Sn)n≥1, H (x) := H((−∞, x]) is called the renewal function.
If EZ > 0, then H (x) is finite for all x ∈ R if and only if EZ2

−
< ∞ [27].

We say that the distribution of Z is arithmetic if its support is contained in dZ for some
d > 0; otherwise it is non-arithmetic. Equivalently, the distribution of Z is arithmetic if and
only if there exists 0 ̸= t ∈ R such that fZ (t) = 1, where fZ is the characteristic function of
the distribution of Z . The law of Z is strongly non-lattice if the Cramer’s condition is satisfied,
that is, lim sup|t |→∞ | fZ (t)| < 1.
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A fundamental result of renewal theory is the Blackwell theorem (see [6]): if the distribution
of Z is non-arithmetic, then for any h > 0,

lim
x→∞

H((x, x + h]) →
h
EZ

.

Note that in the non-arithmetic case, since H((x, x + h]) is convergent as x → ∞ we have
C = supx H((x, x + 1]) < ∞ and so

H ((x, x + h]) ≤ ⌈h⌉ C ≤ αh + β, for x ∈ R. (24)

for some positive α, β and any h > 0.
Under additional assumptions we know more about the asymptotic behaviour of H and H

(see [34]). If for some r > 0 one has P(Z ≤ x) = o(er x ) as x → −∞, then there is some
r1 > 0 such that

H (x) = o(er1x ) as x → −∞. (25)

More accurate asymptotics of H (x) as x → −∞ is given in [29]. If Z has finite second
moment, for some r > 0, P(Z > x) = o(e−r x ) as x → ∞ and the distribution of Z is strongly
non-lattice, then there is r1 > 0 such that (see [34])

H (x) =
x
EZ

+
EZ2

2(EZ )2 + o(e−r1x ) as x → ∞. (26)

2.3. Renewal measure with extra regularity

For the second order asymptotics we need a better control of H ((x, x + h]) in terms of h
than (24); something in the spirit of

H ((x, x + h]) ≤ c hβ, x ≥ 0, h > 0 (27)

for some β > 0. Observe that with Cn = supx H((x, x + 1/n]) < ∞ we have

H ((x, x + h]) ≤ Cn
⌈nh⌉

n
thus (27) holds for all x and h > 1/n with β = 1. Hence, we have to investigate the case of
small h only. We have the following statement.

Lemma 2.1. Assume that P(Z > x) = o(e−r x ) as x → ∞ for some r > 0, EZ2
−
< ∞ and

that the law of Z is strongly non-lattice. If there exists β > 0 such that

lim sup
h→0+

sup
a≥0

h−βP(a < Z ≤ a + h) < ∞, (28)

then there exists β̃ > 0 and c > 0 such that for x ≥ 0 and h ≥ 0,

H ((x, x + h]) ≤ c max{hβ̃, h}. (29)

Remark 2.2. Notice that (28) is satisfied when the law of Z has density in L p for some
1 < p ≤ ∞.

Before we write the proof let us describe a certain factorization of H that will be used in
it. In renewal theory it is usually easier to consider first a non-negative Z , and then to extend
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some argument to arbitrary Z using the following approach (see e.g. proof of Lemma 2.1). Let
N = inf{n ∈ N : Sn > 0} be the first ladder epoch of (Sn)n≥1. We define a measure by

V(B) := E

(
N−1∑
n=0

1Sn∈B

)
, B ∈ B(R).

The support of V is contained in (−∞, 0] and V(R) = EN . Since (Sn)n≥1 has a positive drift,
EN is finite. Let Z>1

d
= SN be the first ladder height of (Sn)n≥1 and consider an i.i.d. sequence

(Z>n )n≥1. Then

H = V ∗ H>,

where H> is the renewal measure of (S>n )n≥1 and S>n =
∑n

k=1 Z>k ([6, Theorem 2], see also
[1, Lemma 2.63] for more general formulation).

Proof of Lemma 2.1. We will first consider the case when Z ≥ 0 a.s. Let F be the cumulative
distribution function of Z . From condition (28) we infer that there exist β, c, ε > 0 such that
for any a ≥ 0 and any h ∈ (0, ε] one has F(a + h) − F(a) = P(a < Z ≤ a + h) ≤ chβ .
Decreasing ε, if needed, we can and do assume that F(ε) < 1. Since H (x) = 1x≥0 + H ∗ F(x)
we have for any x ≥ 0 and h ∈ (0, ε],

H ((x, x + h]) =

∫
[0,x]

(F(x − z + h) − F(x − z))H(dz) +

∫
(x,x+h]

F(x + h − z)H(dz)

≤ chβH([0, x]) + F(h)H ((x, x + h])

and thus

H ((x, x + h]) ≤ (1 − F(ε))−1c hβH([0, x]).

Let now Z be arbitrary and let SN be the first ladder height of (Sn)n≥1. Since EN < ∞ and,
for a ≥ 0 and small enough h,

P(a < SN ≤ a + h) =

∞∑
n=1

P(a < Sn ≤ a + h, S1 ≤ 0, . . . , Sn−1 ≤ 0, Sn > 0)

=

∞∑
n=1

P(a − Sn−1 < Zn ≤ a − Sn−1 + h, N ≥ n) ≤ chβ
∞∑

n=1

P(N ≥ n),

by (28) and it follows that

lim sup
h→0+

sup
a≥0

h−βP(a < SN ≤ a + h) < ∞.

Thus, using factorization H = V ∗ H> we obtain for x ≥ 0 and h ∈ (0, ε],

H ((x, x + h]) =

∫
(−∞,0]

H>((x − t, x − t + h])V(dt)

≤ chβ
∫

(−∞,0]
H>([0, x − t])V(dt) = chβH (x).

For 0 ≤ x ≤ h−δ with δ < β this implies that

H ((x, x + h]) ≤ Chβ(1 + x) ≤ C̃hβ−δ.
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On the other hand, for x > h−δ and r > 0 we have

e−r x
≤ e−rh−δ

≤ r−1hδ,

where we have used the fact that x exp(−x) < 1 for x > 0. The conclusion follows by (26),
since then

H ((x, x + h]) =
h
EZ

+ o(e−r x ). □

3. Renewal theorem

A function f : R → R+ is called directly Riemann integrable on R (dRi) if for any h > 0,∑
n∈Z

sup
(n−1)h≤y<nh

f (y) < ∞ (30)

and

lim
h→0+

h ·

(∑
n∈Z

sup
(n−1)h≤y<nh

f (y) −

∑
n∈Z

inf
(n−1)h≤y<nh

f (y)

)
= 0.

If f is locally bounded and a.e. continuous on R, then an elementary calculation shows that
(30) with h = 1 implies direct Riemann integrability of f . For directly Riemann integrable
function f , we have the following Key Renewal Theorem [4]:∫

R
f (x − z)H(dz) →

1
EZ

∫
R

f (t)dt.

There are many variants of this theorem, when f is not necessarily L1 — see [25, Section
6.2.3]. Such results are usually obtained under the additional requirement that f is (ultimately)
monotone or f is asymptotically equivalent to a monotone function.

Neither of them is sufficient for us. To prove Theorem 1.1 we need to integrate the function
eαxEg(e−x B) with respect to H, where g is C1 function “approximating” 1(1,∞). Therefore, we
prove the following result.

Theorem 3.1. Assume that 0 < EZ < ∞, the law of Z is non-arithmetic and P(Z ≤ x) =

o(er x ) as x → −∞. Assume further that there is a random variable B and a slowly varying
function L such that P(B > x) = x−αL(x). Let g be a bounded function, supp g ⊂ [1,∞) and
there exists a constant c such that⏐⏐⏐ d

dt

(
e−αt g(et )

)⏐⏐⏐ ≤ ce−αt , t > 0. (31)

Then

lim
x→∞

L̃(ex )−1
∫
R

eα(x−z)Eg(ez−x B)H(dz) = α(EZ )−1
∫

[1,∞)
g(r )r−α−1dr. (32)

Assume additionally that E exp(εZ ) < ∞ for some ε > 0 and that the law of Z is strongly
non-lattice. Then as x → ∞,⏐⏐⏐⏐∫

R
eα(x−z)Eg(ez−x B)H(dz) − α L̃(ex )

∫
[1,∞)

g(r )r−α−1dr
⏐⏐⏐⏐ ≤ C L(ex ), (33)

where C depends on ∥g∥sup supx∈R |g(x)| and the constant c in (31). C → ∞ if either
∥g∥sup → ∞ or c → ∞.
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To obtain asymptotics of P(R > ex ) one may integrate eαxP(B > ex ) with respect to H and
control other components as it is explained in the proof of Theorem 4.1. However, using C1

functions g instead of 1(1,∞)(x) allows us to avoid many technical obstacles, without requiring
stronger regularity of H. Basically we need g as defined in (38) i.e. approximating 1(1,∞)(x).
Observe that when g(x) is replaced by 1(1,∞)(x) we obtain eα(x−z)E1(1,∞)(ez−x B) = L(ex−z)
and so Theorem 3.1 is in analogy to Theorems 3.1 and 3.3 in [14] which say that∫

R
L
(
ex−z)H(dz) ∼

1
EZ

L̃
(
ex)

or with more regularity on Z ,∫
R

L
(
ex−z)H(dz) =

1
EZ

L̃
(
ex)

+ O
(
L(ex )

)
.

The proof of Theorem 3.1 is postponed to the last section.

4. Perpetuities

4.1. First order asymptotics

In this section we prove Theorem 1.1. The assumptions are the same as in [14, Theorem
4.2 (i)], where the extremal recursion was considered. The proof, however, is not that simple.
Therefore, we use a different approach, introduced in [9]. Instead of proving directly the
asymptotics of P(R > x) we look for the asymptotics of Eg(R/x), where g is a C1 function
and supp g ⊂ [1,∞). The advantage of such approach is that certain function is easily shown
to be dRi (see Proposition 4.3). Moreover, the asymptotics of P(R > x) follows straightforward
from the asymptotics of Eg(R/x) and the whole proof is quite simple.

Theorem 1.1 is an immediate consequence of (34).

Theorem 4.1. Suppose that conditions (A-1), (A-2), (B-1), (AB-1) are satisfied. Let g be a
bounded function supported in [1,∞). Suppose that (31) holds. Then

lim
x→∞

xαEg(x−1 R)
L̃(x)

=
α

ρ

∫
[1,∞)

g(r )r−α−1dr. (34)

Moreover, as x → ∞⏐⏐⏐⏐xαEg(x−1 R) −
α

ρ
L̃(x)

∫
[1,∞)

g(r )r−α−1dr
⏐⏐⏐⏐ ≤ C max{1, L(x)}, (35)

where C depends on ∥g∥sup and c in (31).

Using Hölder continuous or C1 functions approximating indicators instead of indicators
themselves is a standard procedure which usually allows to reduce regularity requirement for
the probability distribution in question. By regularity we mean here assumptions similar to (42)
or even existence of density. They seem to be needed, if indicators are used, but with Hölder
continuous functions one can handle calculations differently. In various problems this approach
is very successful.

Although we use regularity of functions in intermediate steps, what we obtain at the end
allows us to take the limit and to eliminate the dependence on Hölder constants or derivatives,
see e.g Sections 3.1, 3.2 or Appendix D in [10]. This can be done in (34) because the right hand
side depends only on the integral of g. However this is not the case in (35) because C → ∞ if
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∥g′
∥sup → ∞ which takes place when indicators are approximated by C1 functions. Therefore,

for the second order asymptotics we have to proceed differently. The problem is treated in the
next section.

Finally, α L̃(x) in (34) and (35) may be replaced by EBα
+

1B≤x . As an easy consequence of
(21) we obtain

Proposition 4.2. Assume that the first condition in (B-1) holds. Then, we have

EBα
+

1B≤x = α L̃(x) − L(x) ∼ α L̃(x) (36)

and for r > 0,

EBα+r
+

1B≤x = (α + r )
∫ x

0
tα+r−1P(B > t)dt − xα+rP(B > x) ∼

α

r
xr L(x).

Assuming additionally that the second condition in (B-1) holds we have L̃(x) ↑ ∞ as x → ∞.

Proof of Theorem 1.1. It is enough to prove that for a ξ > 1

lim
x→∞

xα L̃(x)−1P(R > xξ ) = ρ−1ξ−α. (37)

Let ξ > 1 and η > 0 be such that ξ − η > 1. Let g1 be a C1 function such that 0 ≤ g1 ≤ 1
and

g1(x) =

{
0 if x ≤ ξ − η

1 if x ≥ ξ,
(38)

Let g2(x) = g1(x − η).
Then g1, g2 satisfy the assumptions of Theorem 4.1, because g′

1(x) = g′

2(x) = 0 for
x ≤ ξ − η and x ≥ ξ + η. We have

I2 := lim
x→∞

xα L̃(x)−1Eg2(x−1 R)

≤ lim inf
x→∞

xα L̃(x)−1P(R > xξ ) ≤ lim sup
x→∞

xα L̃(x)−1P(R > xξ )

≤ lim
x→∞

xα L̃(x)−1Eg1(x−1 R) =: I1.

Moreover,

|I1 − I2| ≤
α

ρ

∫
∞

0
|g1(r ) − g2(r )|r−α−1dr

≤
α

ρ

∫ ξ+η

ξ−η

r−α−1dr ≤ 2αη/ρ.

Letting η → 0 we infer that

lim
x→∞

xα L̃(x)−1P(R > xξ ) exists.

Finally,⏐⏐⏐ lim
x→∞

xα L̃(x)−1P(R > xξ ) − ρ−1ξ−α
⏐⏐⏐ ≤ αη/ρ.

Hence the conclusion follows. □
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Proof of Theorem 4.1. The proof presented here follows very closely the proof of Theorem
4.2 in [14]. Let us denote

f (x) := eαxEg(e−x R)

and

ψ(x) := eαxEg(e−x R) − eαxEg(e−x AR),

where A and R are independent, supp g ⊂ [1,∞). Let us define the distribution of Z by

P(Z ∈ ·) = EAα1log A∈·. (39)

Then, we have for any x > 0,

f (x) = ψ(x) + eαxEg(e−x AR) = ψ(x) + EAα f (x − log A) = ψ(x) + E f (x − Z ),

Iterating the above equation (see page 8 in [14]), one arrives at

f (x) =

∞∑
n=0

Eψ(x − Sn) =

∫
R
ψ(x − z)H(dz),

where H is the renewal measure of (Sn)n≥1 and Sn = Z1+· · ·+Zn , where (Z i )i are independent
copies of Z and S0 = 0. Let us define

ψB(x) := eαxEg(e−x B) and ψ0(x) := ψ(x) − ψB(x).

Let us note that (31) is equivalent to condition |xg′(x) − αg(x)| ≤ c for x ≥ 1. Thus, (31)
along with boundedness of g imply that g′ is also bounded and so g is Lipschitz continuous.

By Proposition 4.3, ψ0 is directly Riemann integrable and so

lim
x→∞

∫
R
ψ0(x − z)H(dz) =

1
EZ

∫
R
ψ0(t)dt < ∞.

The main contribution to the asymptotics of f comes from
∫
R ψB(x − z)H(dz). Observe that

EZ = EAα log A = ρ

and that since the law of Z has the same supports as log A given A > 0, it is also
non-arithmetic. Moreover

P(Z ≤ x) = EAα1log A≤x ≤ eαxP(A ≤ ex ) = o(eαx )

as x → ∞. By Theorem 3.1 we obtain the assertion. □

In the next proposition we neither need to assume that A ≥ 0 with probability 1 nor that the
law of R is the solution of the equation R d

= AR + B. We require only that the moments
of |R| of order strictly smaller then α are finite, which is satisfied in our framework; see
[10, Lemma 2.3.1]. For 0 < ε ≤ 1, we define H ε to be the set of bounded functions g
satisfying

∥g∥ε = sup
x,y∈R

|g(x) − g(y)|
|x − y|

ε
< ∞.

Clearly, due to boundedness of g, H ε1 ⊂ H ε if ε1 ≤ ε.
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Proposition 4.3. Suppose that A, B, R are real valued random variables and (A, B) is
independent of R. Fix 0 < ε < α, ε ≤ 1 and assume further that E|A|

α < ∞, E
[
|A|

ε
|B|

α−ε
]
<

∞, E|R|
β < ∞ for every β < α. Then for every g ∈ H ε such that 0 /∈ supp g the function

ψ0(x) = eαxE
[
g(e−x (AR + B)) − g(e−x AR) − g(e−x B)

]
is directly Riemann integrable.

Proof. Since ψ0 is continuous it is enough to prove that∑
n∈Z

sup
n≤x<n+1

|ψ0(x)| < ∞. (40)

For x, y ∈ R we have

|g(x + y) − g(x) − g(y)| ≤ |g(x + y) − g(x)| + |g(y) − g(0)| ≤ 2∥g∥ε|y|
ε.

Interchanging the roles of x and y, we arrive at

|g(x + y) − g(x) − g(y)| ≤ 2∥g∥ε min{|x |, |y|}
ε1max{|x |,|y|}>η/2,

where supp g ⊂ {x : |x | > η}. Thus, for any x ∈ R

|ψ0(x)| ≤ 2∥g∥εe(α−ε)xE
[
min{|B|, |AR|}

ε1max{|B|,|AR|}>exη/2
]
.

Since α − ε > 0, we have

sup
n≤x<n+1

|ψ0(x)| ≤ 2∥g∥εe(α−ε)(n+1)E
[
min{|B|, |AR|}

ε1max{|B|,|AR|}>enη

]
and ∑

n∈Z

sup
n≤x<n+1

|ψ0(x)| ≤ 2∥g∥εE

[ n0∑
n=−∞

e(α−ε)(n+1) min{|B|, |AR|}
ε

]
,

where

n0 = ⌊log (2 max{|B|, |AR|}/η)⌋ .

Hence, there is a constant C = C(η, α, ε, ∥g∥ε) such that∑
n∈Z

sup
n≤x<n+1

|ψ0(x)| ≤ C E
[
max{|B|, |AR|}

α−ε min{|B|, |AR|}
ε
]
. (41)

Let us first consider the case when α − 2ε > 0. We have

E
[
max{|B|, |AR|}

α−ε min{|B|, |AR|}
ε
]

≤ E
[
|B|

α−ε
|AR|

ε
]
+ E

[
|AR|

α−ε
|B|

ε
]
.

Since R and (A, B) are independent, the first term above is finite by assumption. For the second
term, we have

E|R|
α−εE

[
|A|

α−ε
|B|

ε
]

= E|R|
α−εE

[
|A|

ε
|A|

α−2ε
|B|

ε
(
1|B|≤|A| + 1|B|>|A|

)]
≤ E|R|

α−ε
(
E|A|

α
+ E|A|

ε
|B|

α−ε
)
,

where we have used |A|
α−2ε1|B|>|A| ≤ |B|

α−2ε. On the other hand, if α−2ε ≤ 0, then we have
0 < α − ε ≤ ε and the right hand side of (41) up to a multiplicative constant C is equal to

E[|AR|
ε
|B|

α−ε1|B|>|AR|] + E[|AR|
α−ε

|B|
α−ε

|B|
2ε−α1|B|≤|AR|].

It is clear that both terms are finite; for the second use |B|
2ε−α1|B|≤|AR| ≤ |AR|

2ε−α . □
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Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.05.016.

E. Damek and B. Kołodziejek / Stochastic Processes and their Applications xxx (xxxx) xxx 15

4.2. Perpetuity — second order asymptotics

In this section we study the second order asymptotics i.e. the size of

|xαP(R > x) − L̃(x)/ρ|

when x → ∞. For that we need more stringent assumptions on the distribution of A. Recall
that L̃(x)/L(x) → ∞ as x → ∞.

Theorem 4.4. Assume (A-1), (A-2), (B-1). Suppose further that there exists β > 0 such that

lim sup
h→0+

sup
a∈R

h−βP(a < log A ≤ a + h) < ∞ (42)

and EAγ < ∞ for some γ > α + α2/β. If the distribution of Z defined by (39) is strongly
non-lattice, then as x → ∞,

xαP(R > x) =
L̃(x)
ρ

+
E
(
(AR + B)α

+
− (AR)α

+
− Bα

+

)
αρ

+ O(L(x)) + o(1), (43)

where a+ = max{a, 0}.

Remark 4.5. Depending on L either the constant or O(L(x)) may dominate in (43). If L(x)
is asymptotically bounded away from zero, then (43) says that

xαP(R > x) = ρ−1 L̃(x) + O(L(x))

when x → ∞.
If L(x) → 0 then (43) is more precise and it implies

lim
x→∞

(
xαP(R > x) − ρ−1 L̃(x)

)
=

E
(
(AR + B)α

+
− (AR)α

+
− Bα

+

)
αρ

.

Remark 4.6. In Theorem 4.4 it is required that the law of Z is strongly non-lattice, but it
is somehow desirable to have a sufficient condition in terms of the distribution of log A. It is
enough to assume that the law of log A is spread-out, i.e. for some n its nth convolution has
a non-zero absolutely continuous part for some n ∈ N. If the law of log A is spread-out then
the law of Z is spread-out as well. This in turn implies that the distribution of Z is strongly
non-lattice.

We begin with the following technical lemma.

Lemma 4.7. Under assumptions of Theorem 4.4, both functions

I1(x) = eαxP(max{AR, B} ≤ ex < AR + B)

and

I2(x) = eαxP(AR + B ≤ ex < max{AR, B})

are O(L(ex )) as x → ∞.

Proof. By assumption we have γ > α + α2/β. Take δ such that

α

γ
< δ < 1 −

α2

γβ
(44)
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and γ ′
∈ (α + α2/β, γ ) such that

α2

γ ′β
< 1 − δ. (45)

Then, we have

I1(x) ≤ eαx
(
P(B > ex/2) + P(eδx < B ≤ ex/2, AR + B > ex ) + P(A > eαx/γ ′

)

+P(B ≤ eδx , A ≤ eαx/γ ′

, AR ≤ ex
≤ AR + B)

)
= K1 + K2 + K3 + K4.

It is clear that K1 = O(L(ex )). Furthermore, taking η such that

α2

γ + α
< η <

αδ

1 + δ
(46)

we obtain

K2 ≤ eαxP(ARB > e(1+δ)x/2) ≤ eαx 2α−ηE(ARB)α−η
+

e(α−η)(1+δ)x = o(e−sx )

for some s > 0. Indeed, E|ARB|
α−η

= (E|AB|
α−η)(E|R|

α−η) and applying Hölder inequality
with p = γ /(α − η) and q = γ /(γ − α + η) we obtain

E|AB|
α−η

≤ (EAγ )1/γ (E|B|
(α−η)q )1/q

and (α − η)q < α in view of (46). Moreover, since 1 − γ /γ ′ < 0 we have

K3 ≤ eαx EAγ

eαγ x/γ ′
= o(e−sx )

for some s > 0 and so K2 and K3 are O(L(ex )) as well. For K4 define λ(x) = 1−e−(1−δ)x
→ 1

and recall that α/γ ′ < 1. Then, by (42),

K4 ≤ eαxP(λ(x)ex < AR ≤ ex , R > λ(x)e(1−α/γ ′)x )

= eαxP(x − log R + log λ(x) < log A ≤ x − log R, R > λ(x)e(1−α/γ ′)x )

≤ Ceαx (− log λ(x))β P(R > λ(x)e(1−α/γ ′)x )

∼ Ceαx e−β(1−δ)x L̃(λ(x)e(1−α/γ ′)x )
λ(x)αeα(1−α/γ ′)x

,

which is O(e−sx ) for some s > 0 in view of (45).
We proceed similarly for I2 writing

I2(x) ≤ eαx
(
P(B ≥ ex ) + P(AR > ex ,−B > eδx ) + P(A > eαx/γ ′

)

+P(−B ≤ eδx , A ≤ eαx/γ ′

, AR + B ≤ ex < AR)
)
.

Then one can show that there exists δ > 0 small enough to ensure that I2(x) = O(L(ex )). □

Proof of Theorem 4.4. We begin the proof in the same way as in the proof of
xreffunction (see also proof of [14, Theorem 4.2]) but with f (x) = eαxP(R > ex ), ψ(x) =

eαx (P(AR + B > ex ) − P(AR > ex )), ψB(x) = eαxP(B > ex ). Then

f (x) =

∫
R
ψB(x − z)H(dz) +

∫
R
ψ0(x − z)H(dz), (47)
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where

ψ0(x) = eαx (P(AR + B > ex ) − P(AR > ex ) − P(B > ex )
)
.

In view of Theorem 3.3 in [14] we know that∫
R
ψB(x − z)H(dz) = ρ−1 L̃(ex ) + O(L(ex )).

Hence it remains to show that∫
R
ψ0(x − z)H(dz) = ρ−1

∫
R
ψ0(t)dt + o(1) + O(L(ex ))

as x → ∞. Let us denote

I1(x) = eαxP(max{AR, B} ≤ ex < AR + B)

I2(x) = eαxP(AR + B ≤ ex < max{AR, B})

I3(x) = eαxP(min{AR, B} > ex )

so that

ψ0(x) = I1(x) − I2(x) − I3(x).

In the proof of Theorem 4.2 in [14] we have already shown (under weaker assumptions) that∫
R

I3(x − z)H(dz) =
Emin{AR, B}

α
+

αρ
+ o(1)

and that Emin{AR, B}
α
+
< ∞. By the preceding lemma we know that Ii (x) = O(L(ex )) for

i = 1, 2 and this implies that as x → ∞,∫
(−∞,0]

Ii (x − z)H(dz) = O(L(ex )), i = 1, 2.

Indeed, consider
∫

(−∞,0]
L(ex−z )

L(ex ) H(dz). For any δ > 0, the integrand is bounded by ce−δz for
some c > 1 by Potter’s bound (20). Combining this with (25) and Lebesgue’s Dominated
Convergence Theorem we conclude that∫

(−∞,0]
L(ex−z)H(dz) ∼ L(ex )H (0). (48)

Observe that there exists β∗ > 0 such that

lim sup
h→0+

sup
a≥0

h−β∗P(a < Z ≤ a + h) < ∞. (49)

Indeed, let p =
α+ε
α

, q =
α+ε
ε

with α + ε ≤ γ . Then

P(a < Z ≤ a + h) = EAα1a<log A≤a+h ≤
(
EAα+ε

)1/p(P(a < log A ≤ a + h)
)1/q

.

Hence

h−β/qP(a < Z ≤ a + h) ≤
(
EAα+ε

)1/p(h−βP(a < log A ≤ a + h)
)1/q
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and (49) follows by (42). In view of (28) we have the following easy result for x > u and
d > u,∫

((x−d)+,x−u]
eα(x−z)H(dz) ≤ eαdH(((x − d)+, x − u])

≤ c eαd max{(x − u − (x − d)+)β̃, x − u − (x − d)+}

≤ c eαd max{(d − u)β̃, d − u}

(50)

for some β̃ > 0, where, the first inequality follows from monotonicity of the integrand and the
second one by Lemma 2.1.

Moreover, notice that for 0 < λ ≤ 1 and all x > 0 one has log(1 + x) ≤ λ−1xλ. Let us note
that on the event {AR + B > max{AR, B}}, both AR and B are positive and, on the space
restricted to this event, random variables U = log max{AR, B} and D = log(AR + B) are well
defined. Then, by (50)∫

(0,∞)
I1(x − z)H(dz) = E

∫
(0,∞)

eα(x−z)1max{AR,B}≤ex−z<AR+BH(dz)

= E
∫

(x−D,x−U ]∩(0,∞)
eα(x−z)H(dz)1D>U

≤ cE(AR + B)α((D − U )β̃ + (D − U ))1D>U .

For the first term above we have

cE(AR + B)α(D − U )β̃1D>U

= cE(AR + B)α
(

log
(

1 +
min{AR, B}

max{AR, B}

))β̃
1AR+B>max{AR,B}

≤
c

λβ̃
E(AR + B)α

min{AR, B}
λβ̃

max{AR, B}λβ̃
1AR+B>max{AR,B}

≤ 2α
c

λβ̃
Emax{AR, B}

α−λβ̃ min{AR, B}
λβ̃1AR+B>max{AR,B}

≤ 2α
c

λβ̃

(
E(AR)α−λβ̃Bλβ̃1min{AR,B}=B>0 + EBα−λβ̃(AR)λβ̃1min{AR,B}=AR>0

)
< ∞

provided β̃λ < α. An analogous calculation shows that E(AR + B)α(D −U )1D>U < ∞ and so∫
(x−D,x−U ]∩(0,∞) eα(x−z)H(dz)1D>U is dominated by an integrable random variable which does

not depend on x . Thus, by Lebesgue’s Dominated Convergence Theorem we have

lim
x→∞

∫
(0,∞)

I1(x − z)H(dz) = E lim
x→∞

∫
(0,x−U ]

eα(x−z)1x−z<DH(dz)1D>U

and for d > u as x → ∞,

eαu
∫

(0,x−u]
eα(x−u−z)1x−u−z<d−uH(dz) → ρ−1eαu

∫
∞

0
eαt 1t<d−udt,

where we have used the Key Renewal Theorem since x ↦→ eαx 1[0,d−u) is dRi (it has compact
support, is bounded and a.e. continuous). Thus

lim
x→∞

∫
(0,∞)

I1(x − z)H(dz) =
E((AR + B)α − max{AR, B}

α)1AR+B>max{AR,B}

αρ
.
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We proceed similarly with I2. With D = log max{AR, B} and U = log(AR + B)
(analogously as before, D and U are well defined on the events {max{AR, B} > 0} and
{AR + B > 0}, respectively), we have∫

(0,∞)
I2(x − z)H(dz) = E

∫
(0,∞)

eα(x−z)1AR+B≤ex−z<max{AR,B}H(dz)

≤ E
∫

(x−D,x−U ]∩(0,∞)
eα(x−z)H(dz)1max{AR,B}>AR+B≥2−1 max{AR,B}>0

+ E
∫

(x−D,∞)∩(0,∞)
eα(x−z)H(dz)1AR+B≤2−1 max{AR,B},max{AR,B}>0.

and by (50)

E
∫

(x−D,x−U ]∩(0,∞)
eα(x−z)H(dz)1max{AR,B}>AR+B≥2−1 max{AR,B}>0

≤ Emax{AR, B}
α
(
(log max{AR, B} − log(AR + B))β̃

+ (log max{AR, B} − log(AR + B))
)

1max{AR,B}>AR+B≥2−1 max{AR,B}>0.

Again, as before we do calculations for the term with β̃. It is bounded by

cEmax{AR, B}
α

(
log
(
1 +

− min{AR, B}

AR + B

))β̃
1max{AR,B}>AR+B≥2−1 max{AR,B}>0

≤
c

λβ̃
Emax{AR, B}

α

(
− min{AR, B}

AR + B

)λβ̃
1max{AR,B}>AR+B≥2−1 max{AR,B}>0

≤ 2λβ
c

λβ̃
Emax{AR, B}

α

(
| min{AR, B}|

max{AR, B}

)λβ̃
1max{AR,B}>AR+B≥2−1 max{AR,B}>0

≤ 2λβ
c

λβ̃
Emax{AR, B}

α−λβ̃
| min{AR, B}|

λβ̃ < ∞

as before. The second term equals

α Emax{AR, B}
α

∫
∞

0
e−αt H((x − D, x − D + t])dt 1AR+B≤2−1 max{AR,B},max{AR,B}>0

≤ cEmax{AR, B}
α
+

1AR+B≤2−1 max{AR,B},max{AR,B}>0.

Now, since min{AR, B} ≤ 0 and

AR + B = max{AR, B} + min{AR, B} ≤
1
2

max{AR, B}

we have

| min{AR, B}| ≥
1
2

max{AR, B}

and

Emax{AR, B}
α1| min{AR,B}|≥2−1 max{AR,B}>0 ≤ EBα1B>0,AR<0,1≤2 |AR|

B

+ E(AR)α1AR>0,B<0,1≤2 |B|

AR

≤ 2η
(
E|B|

α

(
|AR|

|B|

)η
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+ E|AR|
α

(
|B|

|AR|

)η)
≤ 2η(E|R|

ηE|B|
α−ηAη

+ E|R|
α−ηEAα−η

|B|
η) < ∞.

Similarly as before, Lebesgue’s Dominated Convergence Theorem implies that as x → ∞,∫
(0,∞)

I2(x − z)H(dz) →
E(max{AR, B}

α
− (AR + B)α

+
)+

αρ

and so as x → ∞, after straightforward simplification,∫
R
ψ0(x − z)H(dz) =

1
αρ

E
(
(AR + B)α

+
− (AR)α

+
− Bα

+

)
+ O(L(ex )) + o(1). □

5. Perpetuities with general A

Now we are going to consider perpetuities with A attaining negative values as well. More
precisely, we assume that P(A < 0) > 0, possibly with P(A ≤ 0) = 1. Our aim is to reduce
the general case to the one already solved: non-negative A. We propose a unified approach to
perpetuities, which applies beyond our particular assumptions.

Assume that E log |A| < 0 and E log+
|B| < ∞. Then the stochastic equation R d

= AR + B
with (A, B) and R independent has a unique solution, or equivalently, that Rn = An Rn−1 + Bn ,
n ≥ 1, converges in distribution to R for any R0 independent of (An, Bn)n≥1, where (An, Bn)n≥1
is a sequence of independent copies of the pair (A, B).

Define the filtration F = {Fn : n ≥ 1}, where Fn = σ ((Ak, Bk)n
k=1). Following [35, Lemma

1.2], for any stopping time N (with respect to F) which is finite with probability one, R satisfies

R d
= A1 . . . AN R + R∗

N , R and (A1 . . . AN , R∗

N ) are independent, (51)

where R∗
n = B1 + A1 B2 +· · ·+ A1 . . . An−1 Bn for n ≥ 1. For n ≥ 1 we write Πn = A1 · . . . · An

and Π0 = 1. Let N := inf{n ∈ N : Πn ≥ 0}. Then, N is a stopping time with respect to F and
N is finite with probability 1. Indeed, if P(A ≤ 0) = 1 then N = 2. If P(A > 0) > 0 then
N = ∞ if and only if A1 < 0 and for every n ≥ 2, An > 0 which means that for every n

P(N = ∞) ≤ P(A < 0)P(A > 0)n−1
→ 0, as n → ∞. (52)

Let now P(A < 0) > 0 and A+ = A1A≥0, A− = −A1A<0.
Since {N ≥ k} = {A1 < 0, A2 > 0, . . . , Ak−1 > 0} for k ≥ 2 we have

R∗

N =

∞∑
k=1

1N≥kΠk−1 Bk = B1 − (A1)−

(
∞∑

k=2

(A2)+ · · · (Ak−1)+ Bk

)
.

Let us denote the expression in brackets by S. Then, S is independent of ((A1)−, B1) and it is
the unique solution to

S d
= A+S + B, where S and (A+, B) are independent. (53)

Summing up, we obtain

Lemma 5.1. Assume that P(A < 0) > 0 with E log |A| < 0 and E log+
|B| < ∞. Let R be

the solution to

R d
= AR + B, R and (A, B) are independent.
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Then R is also a solution to (51), where

R∗

N
d
= (−A−)S + B, S and (A−, B) are independent

and S satisfies (53).

Thanks to the above lemma, we can reduce the case of signed A to the case on non-negative
A. The properties of ΠN and R∗

N will be inherited by the properties of the original (A, B).
The main result of this section is

Theorem 5.2. Suppose that

(sA-1) P(A < 0) > 0, E log |A| < 0,
(sA-2) there exists α > 0 such that E|A|

α
= 1, ρ = E|A|

α log |A| < ∞,
(sA-3) the distribution of log |A| given |A| > 0 is non-arithmetic,
(sA-4) there exists ε > 0 such that E|A|

α+ε < ∞,
(sB-1)

P(B > t) ∼ p t−αL(t), P(B < −t) ∼ q t−αL(t), p + q = 1,

(sB-2) E|B|
α

= ∞.

Then

xαP(R > x) ∼
L̃(x)
2ρ

, xαP(R < −x) ∼
L̃(x)
2ρ

. (54)

The proof relies on Lemma 5.1. The tail asymptotics of S follows from [21] as it is explained
below in the proof of Theorem 5.4. In view of (51) to conclude Theorem 5.2 it remains to prove
that ΠN and R∗

N satisfy assumptions of Theorem 1.1. First we will prove that ΠN inherits its
properties from A. The following result is strongly inspired by [19, (9.11)–(9.13)] (see also
[1, Lemma 4.12]). For completeness, the proof is included below.

Theorem 5.3.

(i) If the law of log |A| given A ̸= 0 is non-arithmetic (spread-out), then the law of logΠN

given ΠN > 0 is non-arithmetic (spread-out),
(ii) If E|A|

α
= 1 and E|A|

α+ε < ∞ for some ε > 0 then there exists ε̄ > 0 such that
EΠ α+ε̄

N < ∞,
(iii) If E|A|

α
= 1 then EΠ α

N = 1 and EΠ α
N logΠN = 2E|A| log |A|.

Proof. If P(A ≤ 0) = 1 then ΠN = A1 A2 and the law of logΠN given logΠN > 0 is P<∗P<,
where P< is the law of P

log |A|

⏐⏐A<0
. P< ∗ P< is non-arithmetic or spread out respectively if so

is P<. Also the remaining of the above statements are clear in this case so for the rest of the
proof we assume that P(A > 0) > 0.

(i) Denote by P> and P< the laws of P
log A

⏐⏐A>0
and P

log |A|

⏐⏐A<0
, respectively. Set p = P(A >

0) and q = P(A < 0). By [19, (9.11)], we have

PlogΠN |ΠN>0 =
1

P(ΠN > 0)

(
p P> + q2P∗2

<

∞∑
n=0

pnP∗n
>

)
.



Please cite this article as: E. Damek and B. Kołodziejek, Stochastic recursions: Between Kesten’s and Grincevičius–Grey’s assumptions, Stochastic
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If p P> + q P< is spread out then there are k, l ≥ 0 such that P∗k
> ∗ P∗l

< has a non
zero absolutely continuous component. Hence P> ∗P∗2

< is spread out and the mixture of
measures, one of which is spread-out is spread-out as well.
If p P> + q P< is non-arithmetic then the supports of P> and P∗2

< generate a dense sub-
group of R (see the argument below [19, (9.13)]). Thus, we conclude that PlogΠN |ΠN>0

is non-arithmetic.
(ii) Let µ(ε)

+ := EAα+ε1A≥0. Since the function ε ↦→ µ
(ε)
+ is continuous and µ(0)

+ < 1, then
there exists ε1 > 0 such that µ(ε1)

+ < 1.
Then, we have

EΠ α+ε1
N = EAα+ε1

1 1A1≥0 +

∞∑
n=2

EΠ α+ε1
n 1A1<0,A2>0,...,An−1>0,An≤0

= µ
(ε1)
+ +

(
E|A|

α+ε11A<0
)2

∞∑
n=2

(µ(ε1)
+ )n−2 < ∞.

(iii) Define a measure Qn on (Ω ,Fn) by

Qn(S) := E|Πn|
α1S, S ∈ Fn, n ≥ 0.

Let F∞ be the smallest σ−field containing all Fn . The sequence of measures Qn is
consistent, thus by Kolmogorov theorem there exists a unique measure Q on F∞ such
that Q(S) = Qn(S) for S ∈ Fn . Note that (An)n≥1 are i.i.d. also under Q. We have

µ+ := Q(N = 1) = Q(A1 ≥ 0) = E|A|
α1A>0 = µ

(0)
+

and for any k > 1,

Q(N = k) = Q(A1 < 0, A2 > 0, . . . , Ak− > 0, Ak ≤ 0) = (1 − µ+)2µk−2
+
.

Hence EQN = 2, where EQ is the expectation with respect to Q.
Since FN ⊂ F∞, for any S ∈ FN we have

Q(S) =

∞∑
n=1

Q(S ∩ {N = n}) =

∞∑
n=1

E|Πn|
α1S∩{N=n}

=

∞∑
n=1

EΠ α
N 1S∩{N=n} = EΠ α

N 1S.

Putting S = Ω we obtain that EΠ α
N = 1. Further, since ΠN is FN measurable, we have

EΠ α
N logΠN = EQ logΠN = EQ

(
N∑

n=1

log |An|

)
= EQN ·EQ log |A1| = 2E|A|

α log |A|,

where the Wald’s identity was used. □

Secondly we show that the tails of R∗

N behave like P(|B| > x). Let now P(A > 0) > 0 and
A+ = A 1A≥0, A− = −A 1A<0.

Theorem 5.4. Assume additionally that

P(B > t) ∼ p t−αL(t), P(B < −t) ∼ q t−αL(t), p + q = 1
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and E|A|
α+ε < ∞ for some ε > 0. If µ+ = EAα1A>0 < 1, then

P(S > t) ∼
1

1 − µ+

P(B > t), P(S < −t) ∼
1

1 − µ+

P(B < −t), (55)

and

P(R∗

N > t) ∼ P(|B| > t) ∼ P(R∗

N < −t). (56)

Proof. Tail asymptotics of S follows from the application of [21, Theorem 3] to (M, Q, R) =

(A+, B, S). We have E|M |
α

= EAα1A>0 < 1 and E|M |
α+ε

≤ E|A|
α+ε < ∞ by the assumption.

Tail asymptotics of R∗

N then follows from [21, Lemma 4], since R∗

N
d
= B + A−S. Here

(M, Q, Y ) = (A−, B, S) and E|M |
α

= EAα1A<0 < 1 and E|M |
α+ε is finite as above. One

easily checks that P(R∗

N > t) ∼ P(|B| > t). To obtain P(R∗

N < −t) ∼ P(|B| > t) we apply the
above argument to −R d

= A(−R) − B. □

6. Proof of Theorem 3.1

First we prove that

lim
x→∞

L̃(ex )−1
∫

(−∞,0]
eα(x−z)Eg(ez−x B)H(dz) = 0 (57)

Since g is bounded and its support is contained in [1,∞), there exists a constant c such that
g(x) ≤ c 1x>1−ε for any ε > 0. Thus, with cε = c(1 − ε)−1 we have eα(x−z)Eg(ez−x B) ≤

c eα(x−z)P(B > (1 − ε)ex−z) = cεL((1 − ε)ex−z) and therefore∫
(−∞,0]

eα(x−z)Eg(ez−x B)H(dz) ≤ cε

∫
(−∞,0]

L((1 − ε)ex−z)H(dz)

∼ cεL(ex )H (0) = o(L̃(ex )).

by (48).
For the main part we have∫

(0,∞)
eα(x−z)Eg(e−(x−z) B)H(dz) =

∫
(0,∞)

eα(x−z)Eg(e−(x−z) B)1{B>ex }H(dz)

+

∫
(0,∞)

eα(x−z)Eg(e−(x−z) B)1{0<B≤ex }H(dz)

= I1(x) + I2(x).

The first term is easily seen to be O(L(ex )). Indeed, observe that the integral
∫

(0,∞) e−αzH(dz) =∫
∞

0 αe−αx H ((0, x]) dx is finite by (24). Bounding g by an indicator as before, we have

I1(x) ≤ cε

∫
(0,∞)

eα(x−z)P(B > (1 − ε)ex−z, B > ex )H(dz)

= cεL(ex )
∫

(0,∞)
e−αzH(dz).

Let us decompose I2(x) in the following way

I2(x) = E
∫

∞

0
eα(x−z)g(e−(x−z) B)

dz
EZ

10<B≤ex

+ E
∫

∞

0
eα(x−z)g(e−(x−z) B)d

(
H (z) −

z
EZ

)
10<B≤ex (58)
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Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.05.016.

24 E. Damek and B. Kołodziejek / Stochastic Processes and their Applications xxx (xxxx) xxx

The first term above is

α(EZ )−1 L̃(ex )
∫

∞

0
g(r )r−α−1dr + O(L(ex ))

and it constitutes the main ingredient in (32). To see this, change the variable r = e−(x−z) B,
to obtain

(EZ )−1EBα
+

1B≤ex

∫
∞

0
g(r ) r−α−1 dr,

by the fact that supp g ⊂ [1,∞). But (36) gives us that EBα
+

1B≤ex = α L̃(ex )−L(ex ). It remains
to prove that the second term in (58) is o(L̃(ex )). Let us denote

R(z) = H (z) −
z
EZ

.

The equality g(1) = 0 is a consequence of supp g ⊂ [1,∞) and differentiability of g. Since
limz→∞ e−αz R(z) = 0, after integrating by parts we see that

E
∫

(x−log B,∞)
eα(x−z)g(e−(x−z) B)dR(z)10<B≤ex

= −E
∫

∞

x−log B

d
dz

(
eα(x−z)g(e−(x−z) B)

)
R(z)dz10<B≤ex

= −EBα
∫

∞

0

d
dt

(
e−αt g(et )

)
R(t + x − log B)dt10<B≤ex ,

where we have substituted t = z − x + log B. Moreover, notice that∫
∞

0

d
dt

(
e−αt g(et )

)
dt = 0

and so

EBα10<B≤ex

∫
∞

0

d
dt

(
e−αt g(et )

)
R(t + x − log B)dt

= EBα10<B≤ex

∫
∞

0

d
dt

(
e−αt g(et )

)
(R(t + x − log B) − R(x − log B)) dt

By the assumption (31), there exists a constant C such that for all t > 0,⏐⏐⏐ d
dt

(
e−αt g(et )

)⏐⏐⏐ ≤ Ce−αt ,

so it amounts to estimate

EBα10<B≤ex

∫
∞

0
e−αt

|R(t + x − log B) − R(x − log B)| dt (59)

Define

J (x) :=
EBα10<B≤ex

∫
∞

0 e−αt |R(t + x − log B) − R(x − log B)| dt
EBα10<B≤ex

.

We will show that J (x) → 0, and since the denominator equals α L̃(ex ) this will be the end of
the proof.

Define the law of Cx by

P(Cx ∈ ·) =
EBα

+
1B≤ex ,B∈·

EBα+1B≤ex
.
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Note that P(0 < Cx ≤ ex ) = 1. Thus, J (x) may be rewritten as

E
∫

∞

0
e−αt

|R(t + x − log Cx ) − R(x − log Cx )| dt.

Since for any positive x and t , |R(t + x) − R(x)| = |H((x, x + t]) −
t

EZ | ≤ c t + b for some
c, b > 0, we have

lim
x→∞

J (x) =

∫
∞

0
e−αt lim

x→∞
E |R(t + x − log Cx ) − R(x − log Cx )| dt.

Moreover, x − Cx converges to infinity in probability, as x → ∞. Indeed, for any N > 0 we
have

P(x − log Cx ≥ N ) = P(Cx ≤ ex−N ) =
EBα

+
1B≤ex−N

EBα+1B≤ex
=

L̃(ex−N )
L̃(ex )

→ 1,

because L̃ is slowly varying. Since, |R(t + x) − R(x)| → 0 as x → ∞, we infer that

|R(t + x − log Cx ) − R(x − log Cx )| (60)

converges to 0 in probability, as x → ∞. But (60) is bounded in x , thus the convergence holds
also in L1 and we may finally conclude that

lim
x→∞

J (x) = 0,

which completes the proof of (32).
If additionally E exp(εZ ) < ∞ for some ε > 0 and the law of Z is strongly non-lattice

then (59) is bounded by C L(exp(x)) which was proved in [14] — see the end of the proof of
Theorem 3.3 there just before the references.
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Appendix

Suppose that E|B|
β < ∞ for any β < α and that there is ε > 0 such that E|A|

α+ε < ∞.
Then by Hölder inequality we may conclude that for every η < α, E|B|

α−η
|A|

η < ∞. However,
if the tail of B exhibits some more regularity, a weaker condition implies the same conclusion.

Suppose that xαP(|B| > x) ≤ L(x), where L is a slowly varying function bounded away
from 0 and ∞ on any compact subset of (0,∞). Let W be a non-decreasing function such that

W (x) ≥ C max{L(x), log(x)} for x ≥ 0.

For instance W (x) = max{sup0<w≤x L(w), log(x)} or W (x) = max{L̃(x), log(x)} will do.
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Lemma 7.1. Assume that W is as above, η < α, D > 2α
η

− 1 and

E|A|
αW (|A|)D < ∞.

Then

E|B|
α−η

|A|
η < ∞.

Proof. Since E|A|
α < ∞ and E|B|

α−η < ∞, it is enough to prove that for a fixed C0

E|B|
α−η

|A|
η1|B|>|A|1|A|≥C0 < ∞.

We choose β > 0 and γ such that

1 −
η

α
< γ < 1. (61)

For m ≥ k consider the sets

Sk,m =
{
ek W (ek)β < |A| ≤ ek+1W (ek+1)β, em W (em)β < |B| ≤ em+1W (em+1)β

}
Let C0 = ek0 W (ek0 )β , where k0 is such that W (k0) ≥ 1. Then

E|B|
α−η

|A|
η1|B|>|A|1|A|≥C0 ≤ C

∑
k≥k0

∑
m≥k

em(α−η)+kηW (em)β(α−η)W (ek)βηP(Sk,m),

P(Sk,m) ≤ P
(
|B| > em W (em)β

)γP(|A| > ek W (ek)β
)1−γ

and

P
(
|B| > em W (em)β

)
≤ e−αm W (em)−αβL

(
em W (em)β

)
.

Let δ > 0. By the Potter bounds (20), since W (em) ≥ 1 for m ≥ k0

L
(
em W (em)β

)
≤ C L

(
em)W (em)δβ ≤ CW

(
em)W (em)δβ .

Hence

P
(
|B| > em W (em)β

)
≤ Ce−αm W (em)1−αβ+βδ.

Further,

P
(
|A| > ek W (ek)β

)
≤
(
E|A|

αW (|A|)D)e−αk W (ek)−αβW
(
ek W (ek)β

)−D

≤ Ce−αk W (ek)−D−αβ,

because W is non-decreasing and W (ek) ≥ 1. Therefore, we have

E|B|
α−η

|A|
η1|B|>|A|1|A|≥C0

≤ C
∑
k≥k0

∑
m≥k

e(m−k)(α−η−αγ )W (em)β(α−η)+γ (1−αβ+βδ)W (ek)βη−αβ(1−γ )−D(1−γ ).

Notice that in view of (61)

α − η − αγ < 0.

In order to sum up over β, we choose β such that

β(α − η − αγ ) < −γ.



Please cite this article as: E. Damek and B. Kołodziejek, Stochastic recursions: Between Kesten’s and Grincevičius–Grey’s assumptions, Stochastic
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Finally, we take δ sufficiently small to ensure

β(α − η − αγ + γ δ) < −γ.

Then ∑
m≥k

e(m−k)(α−η−αγ )W (em)β(α−η)+γ (1−αβ+βδ)
≤

∑
m≥0

em(α−η−αγ ) < ∞.

Hence

E|B|
α−η

|A|
η1|B|>|A|1|A|≥C0

≤ C
∑
k≥k0

W (ek)β(η−α+αγ )−D(1−γ )

≤ C
∑
k≥k0

kβ(η−α+αγ )−D(1−γ ) < ∞,

Finally, we need to guarantee that

β(η − α + αγ ) − D(1 − γ ) < −1. (62)

Suppose that β(α − η − αγ ) = −γ − ξ for some ξ > 0. Then (62) becomes

D >
1 + γ + ξ

1 − γ
. (63)

and we may minimize D by an appropriate choice of γ . Notice that if ξ = 0 and γ = 1 −η/α

the right hand side of (63) becomes 2α/η−1. Since γ may be arbitrarily close to 1−η/α and
ξ arbitrarily close to 0, D > 2α/η − 1 will do. □
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Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.05.016.

28 E. Damek and B. Kołodziejek / Stochastic Processes and their Applications xxx (xxxx) xxx

[13] E. Damek, P. Dyszewski, Iterated random functions and regularly varying tails, J. Difference Equ. Appl. 24
(9) (2018) 1503–1520.

[14] E. Damek, B. Kołodziejek, A renewal theorem and supremum of a perturbed random walk, Electron. Commun.
Probab. 23 (2018) 1–13, Paper No. 82.

[15] P. Diaconis, D. Freedman, Iterated random functions, SIAM Rev. 41 (1) (1999) 45–76 (electronic).
[16] M. Duflo, Random Iterative Systems, Springer Verlag, New York, 1997.
[17] P. Dyszewski, Iterated random functions and slowly varying tails, Stochastic Process. Appl. 126 (2) (2016)

392–413.
[18] J.H. Elton, A multiplicative ergodic theorem for Lipschitz maps, Stochastic Process. Appl. 34 (1990) 39–47.
[19] C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1 (1)

(1991) 126–166.
[20] C.M. Goldie, R. Grübel, Perpetuities with thin tails, Adv. Appl. Probab. 28 (2) (1996) 463–480.
[21] D.R. Grey, Regular variation in the tail behaviour of solutions of random difference equations, Ann. Appl.

Probab. 4 (1) (1994) 169–183.
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