期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:118
Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation
Article
Peng, Shige
关键词: g-expectation;    G-expectation;    G-normal distribution;    BSDE;    SDE;    Nonlinear probability theory;    Nonlinear expectation;    Brownian motion;    Ito's stochastic calculus;    Ito's integral;    Ito's formula;    Gaussian process;    Quadratic variation process;    Jensen's inequality;    G-convexity;   
DOI  :  10.1016/j.spa.2007.10.015
来源: Elsevier
PDF
【 摘 要 】

We develop a notion of nonlinear expectation - G-expectation - generated by a nonlinear heat equation with infinitesimal generator G. We first study multi-dimensional G-normal distributions. With this nonlinear distribution we can introduce Our G-expectation under which the canonical process is a multi-dimensional G-Brownian motion. We then establish the related stochastic calculus, especially stochastic integrals of Ito's type with respect to Our G-Brownian motion, and derive the related Ito's formula. We have also obtained the existence and uniqueness of stochastic differential equations under Our G-expectation. (C) 2008 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2007_10_015.pdf 1216KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次