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Abstract

We develop a notion of nonlinear expectation – G-expectation – generated by a nonlinear heat equation
with infinitesimal generator G. We first study multi-dimensional G-normal distributions. With this nonlinear
distribution we can introduce our G-expectation under which the canonical process is a multi-dimensional
G-Brownian motion. We then establish the related stochastic calculus, especially stochastic integrals of Itô’s
type with respect to our G-Brownian motion, and derive the related Itô’s formula. We have also obtained
the existence and uniqueness of stochastic differential equations under our G-expectation.
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1. Introduction

The purpose of this paper is to extend classical stochastic calculus for multi-dimensional
Brownian motion to the setting of nonlinear G-expectation. We first recall the general framework
of nonlinear expectation studied in [40,39], where the usual linearity is replaced by positive
homogeneity and subadditivity. Such a sublinear expectation functional enables us to construct a
Banach space, similar to an L1-space, starting from a functional lattice of Daniell’s type.
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Then we proceed to construct a sublinear expectation on the space of continuous paths
from R+ to Rd , starting from 0, which will be an analogue of Wiener’s law. The operation
mainly consists in replacing the Brownian semigroup by a nonlinear semigroup coming from the
solution of a nonlinear parabolic partial differential equation (1) where there appears a mapping
G acting on Hessian matrices. Indeed, the Markov property permits one to define in the same
way nonlinear conditional expectations with respect to the past. Then we present some rules and
examples of computations under the newly constructed G-Brownian (motion) expectation. The
fact that the underlying marginal nonlinear expectations are G-normal distributions derived from
the nonlinear heat equation (1) is very helpful for estimating natural functionals. As result, our
G-Brownian motion also has independent increments with identical G-normal distributions.

G-Brownian motion has a very rich and interesting new structure which non-trivially
generalizes the classical one. We thus can establish the related stochastic calculus, especially
G-Itô’s integrals (see [23, 1942]) and the related quadratic variation process 〈B〉. A very
interesting new phenomenon of our G-Brownian motion is that its quadratic process 〈B〉 also has
independent increments which are identically distributed. The corresponding G-Itô’s formula is
obtained. We then introduce the notion of G-martingales and the related Jensen inequality for
a new type of “G-convex” functions. We have also established the existence and uniqueness
of the solution to a stochastic differential equation under our stochastic calculus by the same
Picard iterations as in the classical situation. Books on stochastic calculus, e.g., [10,20,22,24,29,
34,46,47,51], are recommended for understanding the present results and some further possible
developments of this new stochastic calculus.

As indicated in Remark 2, the nonlinear expectations discussed in this paper can be regarded
as coherent risk measures. This with the related conditional expectations Ê[·|Ht ]t≥0 makes a
dynamic risk measure: the G-risk measure.

The other motivation for our G-expectation is the notion of (nonlinear) g-expectations
introduced in [36,37]. Here g is the generating function of a backward stochastic differential
equation (BSDE) on a given probability space (Ω ,F ,P). The natural definition of the conditional
g-expectations with respect to the past induces rich properties of nonlinear g-martingale
theory (see, among others, [3,5–7,11,12,8,9,26,27,38,41,42,45]). Recently g-expectations are
also studied as dynamic risk measures: g-risk measure (cf. [48,4,16]). Fully nonlinear super-
hedging is also a possible application (cf. [31,49] where a new BSDE approach was introduced).

The notion of g-expectation is defined on a given probability space. In [40] (see also [39]),
we have constructed a kind of filtration-consistent nonlinear expectation through the so-called
nonlinear Markov chain. As compared with the framework of g-expectations, the theory of G-
expectation is intrinsic, a meaning similar to “intrinsic geometry” in the sense that it is not based
on a given (linear) probability space. Since the classical Brownian expectation as well as many
other linear and nonlinear expectations are dominated by our G-expectation (see Remark 26,
Example 42 and [40]) and thus can be considered as continuous functionals, our theory also
provides a flexible theoretical framework.

One-dimensional G-Brownian motion was studied in [43]. Unlike for the classical situation,
in general, we cannot find a system of coordinates under which the corresponding components
Bi , i = 1, . . . , d, are mutually independent from each other. The mutual quadratic variations〈
Bi , B j

〉
will play an essential rule.

During the process of revision of this paper, the author found a very interesting paper [17] by
Denis and Martini on super-pricing of contingent claims under model uncertainty of volatility.
They have introduced a norm on the space of continuous paths Ω = C([0, T ])which corresponds
to our L2

G-norm and developed a stochastic integral. There is no notion of nonlinear expectation
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such as G-expectation, conditional G-expectation, the related G-normal distribution and the
notion of independence in their paper. But on the other hand, powerful tools in capacity theory
enable them to obtain pathwise results for random variables and stochastic processes through the
language of “quasi-surely”, (see Feyel and de La Pradelle [18]) in the place of “almost surely” in
classical probability theory. Their method provides a way to proceed with a pathwise analysis
for our G-Brownian motion and the related stochastic calculus under G-expectation; see the
forthcoming paper of Denis, Hu and Peng.

This paper is organized as follows: In Section 2, we recall the framework of nonlinear
expectation established in [40] and adapt it to our objective. In Section 3 we introduce d-
dimensional G-normal distribution and discuss its main properties. In Section 4 we introduce
d-dimensional G-Brownian motion, the corresponding G-expectation and their main properties.
We then can establish the stochastic integral with respect to G-Brownian motion of Itô’s type,
the related quadratic variation processes and then G-Itô’s formula in Section 5, the G-martingale
and Jensen’s inequality for G-convex functions in Section 6, and the existence and uniqueness
theorem of SDE driven by G-Brownian motion in Section 7.

All the results of this paper are based on the very basic knowledge of Banach space and
the parabolic partial differential equation (1). When this G-heat equation (1) is linear, our G-
Brownian motion becomes the classical Brownian motion. This paper still provides an analytical
shortcut for reaching the sophisticated Itô calculus.

2. Nonlinear expectation: A general framework

We briefly recall the notion of nonlinear expectations introduced in [40]. Following Daniell’s
famous integration (cf. Daniell in 1918 [14]; see also [50]), we begin with a vector lattice. Let Ω
be a given set and let H be a vector lattice of real functions defined on Ω containing 1, namely,
H is a linear space such that 1 ∈ H and that X ∈ H implies |X | ∈ H. H is a space of random
variables. We assume that the functions on H are all bounded.

Definition 1. A nonlinear expectation Ê is a functional H 7→ R satisfying the following
properties:

(a) Monotonicity: if X, Y ∈ H and X ≥ Y then Ê[X ] ≥ Ê[Y ].
(b) Preservation of constants: Ê[c] = c. In this paper we are interested in the sublinear

expectations which satisfy:
(c) Subadditivity (or the self-dominated property):

Ê[X + Y ] ≤ Ê[X ] + Ê[Y ], ∀X, Y ∈ H.
(d) Positive homogeneity: Ê[λX ] = λÊ[X ], ∀λ ≥ 0, X ∈ H.

Remark 2. It is clear that (b)+ (c) implies:
(e) Translation by constants: Ê[X + c] = Ê[X ] + c. Indeed,

Ê[X ] + c = Ê[X ] − Ê[−c]

≤ Ê[X + c]

≤ Ê[X ] + Ê[c] = Ê[X ] + c.

We recall that the notion of the above sublinear expectations was systematically introduced by
Artzner, Delbaen, Eber and Heath [1,2], in the case where Ω is a finite set, and by Delbaen [15]
for the general situation with the notation of risk measure: ρ(X) = Ê[−X ]. See also Huber [21]
for even earlier study of this notion Ê (called upper expectation E∗ in Ch. 10 of [21]).
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We follow [40] in introducing a Banach space via H and Ê. We define ‖X‖ := Ê[|X |], X ∈ H.
H forms a normed space (H, ‖·‖) under ‖·‖ in the following sense. For each X, Y ∈ H such that
‖X − Y‖ = 0, we set X = Y . This is equivalent to saying that the linear subspace

H0 := {X ∈ H, ‖X‖ = 0}

is the null space, or in other words, we only consider the elements in the quotient space H/H0.
Under such an arrangement (H, ‖·‖) is a normed space. We denote by ([H], ‖·‖), or simply [H],
the completion of (H, ‖·‖). (H, ‖·‖) is a dense subspace of the Banach space ([H], ‖·‖) (see,
e.g., Yosida [52], Sec. I–10).

For any X ∈ H, the mappings

X+(ω) = max{X (ω), 0} : H 7−→ H,
X−(ω) = max{−X (ω), 0} : H 7−→ H

satisfy

|X+ − Y+| ≤ |X − Y |,

X− − Y− ≤ (Y − X)+ ≤ |X − Y |.

Thus they are both contractions under the norm ‖·‖ and can be continuously extended to the
Banach space [H].

We define the partial order “≥” in this Banach space.

Definition 3. An element X in ([H], ‖·‖) is said to be nonnegative, or X ≥ 0, 0 ≤ X , if X = X+.
We also write X ≥ Y , or Y ≤ X , if X − Y ≥ 0.

It is easy to check that if X ≥ Y and Y ≥ X , then X = Y in ([H], ‖·‖). The nonlinear
expectation Ê[·] can be continuously extended to ([H], ‖·‖) on which (a)–(e) still hold.

3. G-normal distributions

For a given positive integer n, we will denote by (x, y) the scalar product of x , y ∈ Rn and
by |x | = (x, x)1/2 the Euclidean norm of x . We denote by lip(Rn) the space of all bounded and
Lipschitz real functions on Rn . We introduce the notion of nonlinear distribution — G-normal
distribution. A G-normal distribution is a nonlinear expectation defined on lip(Rd) (here Rd is
considered as Ω and lip(Rd) as H):

PG
1 (φ) = u(1, 0) : φ ∈ lip(Rd) 7→ R,

where u = u(t, x) is a bounded continuous function on [0,∞) × Rd which is the viscosity
solution of the following nonlinear parabolic partial differential equation (PDE):

∂u

∂t
− G(D2u) = 0, u(0, x) = φ(x), (t, x) ∈ [0,∞)× Rd , (1)

where D2u is the Hessian matrix of u, i.e., D2u = (∂2
x i x j u)

d
i, j=1 and

G(A) = GΓ (A) =
1
2

sup
γ∈Γ

tr[γ γ T A], A = (Ai j )
d
i, j=1 ∈ Sd . (2)

Sd denotes the space of d × d symmetric matrices. Γ is a given non-empty, bounded and closed
subset of Rd×d , the space of all d × d matrices.
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Remark 4. The nonlinear heat equation (1) is a special kind of Hamilton–Jacobi–Bellman
equation. The existence and uniqueness of (1) in the sense of a viscosity solution can be found in,
for example, [13,19,35,51], and [30] for the C1,2-solution if γ γ T

≥ σ0 In , for each γ ∈ Γ , for a
given constant σ0 > 0 (see also [34] for elliptic cases). It is a known result that u(t, ·) ∈ lip(Rd)

(see e.g. [51], Ch. 4, Prop.3.1., or [35], Lemma 3.1., for the Lipschitz continuity of u(t, ·), or
Lemma 5.5 and Proposition 5.6 in [39] for a more general conclusion). The boundedness follows
directly from the comparison theorem (or maximum principle) of this PDE. It is also easy to
check that, for a given ψ ∈ lip(Rd

× Rd), PG
1 (ψ(x, ·)) is still a bounded and Lipschitz function

in x .

Remark 5. A equivalent definition of G-normal distribution and the corresponding G-normal
distributed random variables are given in [44, Peng2007].

In the case where Γ is a singleton {γ0} the above PDE becomes a standard linear heat equation.
Thus for G0

= G{γ0} the corresponding G0-distribution is just the d-dimensional classical
normal distribution N (0, γ0γ

T
0 ). In a typical case where γ0 = Id ∈ Γ , we have

PG0

1 (φ) =
1

(2π)d/2

∫
Rd

exp

[
−

d∑
i=1

(x i )2

2

]
φ(x)dx .

In the case where γ0 ∈ Γ , from the comparison theorem of PDE,

PG
1 (φ) ≥ PG0

1 (φ), ∀φ ∈ lip(Rd). (3)

More generally, for each subset Γ ′ ⊂ Γ , the corresponding PGΓ ′ -distribution is dominated by
PG in the following sense:

P
GΓ ′

1 (φ)− P
GΓ ′

1 (ψ) ≤ PG
1 (φ − ψ), ∀φ,ψ ∈ lip(Rd).

In fact it is easy to check that GΓ ′(A) − GΓ ′(B) ≤ GΓ (A − B), for any A, B ∈ Sd . From this
we have the above inequality (see the Appendix of [44] for the proof).

Remark 6. In [43] we have discussed the one-dimensional case, which corresponds d = 1 and
Γ = [σ, 1] ⊂ R, where σ ∈ [0, 1] is a given constant. In this case the nonlinear heat equation
(1) becomes

∂u

∂t
−

1
2
[(∂2

xx u)+ − σ 2(∂2
xx u)−] = 0, u(0, x) = φ(x), (t, x) ∈ [0,∞)× R.

In the multi-dimensional case we also have the following typical nonlinear heat equation:

∂u

∂t
−

1
2

d∑
i=1

[(∂2
x i x i u)

+
− σ 2

i (∂
2
x i x i u)

−
] = 0,

where σi ∈ [0, 1] are given constants. This corresponds to

Γ = {diag[γ1, . . . , γd ], γi ∈ [σi , 1], i = 1, . . . , d}.

The corresponding normal distribution with mean at x ∈ Rd and square variation t > 0 is
PG

1 (φ(x +
√

t × ·)). Just like for the classical situation of a normal distribution, we have
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Lemma 7. For each φ ∈ lip(Rd), the function

u(t, x) = PG
1 (φ(x +

√
t × ·)), (t, x) ∈ [0,∞)× Rd (4)

is the solution of the nonlinear heat equation (1) with the initial condition u(0, ·) = φ(·).

Proof. Let u ∈ C([0,∞) × Rd) be the viscosity solution of (1) with u(0, ·) = φ(·) ∈ lip(Rd).
For a fixed (t̄, x̄) ∈ (0,∞) × Rd , we define ū(t, x) = u(t × t̄, x

√
t̄ + x̄). Then ū is the

viscosity solution of (1) with the initial condition ū(0, x) = φ(x
√

t̄ + x̄). Indeed, let ψ be a
C1,2 function on (0,∞)× Rd such that ψ ≥ ū (resp. ψ ≤ ū) and ψ(τ, ξ) = ū(τ, ξ) for a fixed
(τ, ξ) ∈ (0,∞)× Rd . We have ψ( t

t̄ ,
x−x̄
√

t̄
) ≥ u(t, x), for all (t, x) and

ψ

(
t

t̄
,

x − x̄
√

t̄

)
= u(t, x), at (t, x) = (τ t̄, ξ

√

t̄ + x̄).

Since u is the viscosity solution of (1), at the point (t, x) = (τ t̄, ξ
√

t̄ + x̄), we have

∂ψ
(

t
t̄ ,

x−x̄
√

t̄

)
∂t

− G

(
D2ψ

(
t

t̄
,

x − x̄
√

t̄

))
≤ 0 (resp. ≥ 0).

But G is a positive homogeneous function, i.e., G(λA) = λG(A), when λ ≥ 0; we thus derive

∂ψ(t, x)

∂t
− G(D2ψ(t, x))|(t,x)=(τ,ξ) ≤ 0 (resp. ≥ 0).

This implies that ū is the viscosity subsolution (resp. supersolution) of (1). According to the
definition of PG(·) we obtain (4). �

Definition 8. We define

PG
t (φ)(x) = PG

1 (φ(x +
√

t × ·)) = u(t, x), (t, x) ∈ [0,∞)× Rd . (5)

From the above lemma, for each φ ∈ lip(Rd), we have the following nonlinear version of the
chain rule:

PG
t (P

G
s (φ))(x) = PG

t+s(φ)(x), s, t ∈ [0,∞), x ∈ Rd . (6)

This chain rule was first established by Nisio [32,33] under the name of the “envelope of
Markovian semigroups”. See also [40].

Lemma 9. The solution of (1) with initial condition u(0, x) = φ((a, x)), for a given φ ∈ lip(R),
has the form u(t, x) = ū(t, x̄), x̄ = (a, x), where ū is the solution of

∂ ū

∂t
− Ga(∂x̄ x̄ ū) = 0, u(0, x̄) = φ(x̄), (t, x̄) ∈ [0,∞)× R, (7)

where

Ga(β) =
1
2

max
γ∈Γ

tr[γ γ TaaTβ], β ∈ R.

The above PDE can be written as

∂ ū

∂t
−

1
2
[σaaT(∂x̄ x̄ ū)+ + σ−aaT(∂x̄ x̄ ū)−] = 0, u(0, x̄) = φ(x̄), (8)
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where we define aaT
= [ai a j

]
d
i, j=1 ∈ Sd and

σA = sup
γ∈Γ

tr[γ γ T A] = 2G(A), A ∈ Sd . (9)

Here Sd is the space of d × d symmetric matrices.

Remark 10. It is clear that the functional

PGa
1 (φ) = ū(1, 0) : φ ∈ lip(R) 7→ R

constitutes a special one-dimensional nonlinear normal distribution, called a Ga-normal
distribution.

Proof. It is clear that the PDE (7) has a unique viscosity solution. We then can set u(t, x) =
ū(t, (a, x)) and check that u is the viscosity solution of (1). (8) is then easy to check. �

Example 11. In the above lemma, if φ is convex, and σaaT > 0, then

PG
t (φ((a, ·)))(x) =

1√
2πσaaT t

∫
∞

−∞

φ(y) exp
(
−
(y − x)2

2σaaT t

)
dy.

If φ is concave and σ−aaT < 0, then

PG
t (φ((a, ·)))(x) =

1√
2π |σ−aaT |t

∫
∞

−∞

φ(y) exp
(
−
(y − x)2

2|σ−aaT |t

)
dy.

Proposition 12. We have
(i) For each t > 0, the G-normal distribution PG

t is a nonlinear expectation on the lattice
lip(Rd), with Ω = Rd , satisfying (a)–(e) of Definition 1. The corresponding completion space
[H] = [lip(Rd)]t under the norm ‖φ‖t := PG

t (|φ|)(0) contains φ(x) = xn1
1 × · · · × xnd

d ,
ni = 1, 2, . . . , i = 1, . . . , d, x = (x1, . . . , xd)

T as well as xn1
1 × · · · × xnd

d ×ψ(x), ψ ∈ lip(Rd)

as its special elements. Relation (5) still holds. We also have the following properties:
(ii) We have, for each a = (a1, . . . , ad)

T
∈ Rd and A ∈ Sd ,

PG
t ((a, x)x∈Rd ) = 0,

PG
t (((a, x)2)x∈Rd ) = t · σaaT , PG

t ((−(a, x)2)x∈Rd ) = t · σ−aaT ,

PG
t (((a, x)4)x∈Rd ) = 6(σaaT)t2, PG

t ((−(a, x)4)x∈Rd ) = −6(σ−aaT)2t2,

PG
t (((Ax, x))x∈Rd ) = t · σA = 2G(A)t.

Proof. (ii) By Lemma 9, we have the explicit solutions of the nonlinear PDE (1) with the
following different initial condition u(0, x) = φ(x):

φ(x) = (a, x) H⇒ u(t, x) = (a, x),

φ(x) = (a, x)4 H⇒ u(t, x) = (a, x)4 + 6(a, x)2σaaT t + 6σ 2
aaT t2,

φ(x) = −(a, x)4 H⇒ u(t, x) = −(a, x)4 + 6(a, x)2σ−aaT t − 6|σ−aaT |
2t2.
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Similarly, we can check that φ(x) = (Ax, x) H⇒ u(t, x) = (Ax, x)+ σAt . This
implies, by setting A = aaT and A = −aaT,

φ(x) = (a, x)2 H⇒ u(t, x) = (a, x)2 + σaaT t,

φ(x) = −(a, x)2 H⇒ u(t, x) = −(a, x)2 + σ−aaT t.

More generally, for φ(x) = (a, x)2n , we have

u(t, x) =
1√

2πσaaT t

∫
∞

−∞

y2n exp
(
−
(y − x)2

2σaaT t

)
dy.

By this we can prove (i). �

4. G-Brownian motions under G-expectations

In the rest of this paper, we set � = Cd
0 (R
+), the space of all Rd -valued continuous paths

(ωt )t∈R+ , with ω0 = 0, equipped with the distance

ρ(ω1, ω2) :=

∞∑
i=1

2−i
[(max

t∈[0,i]
|ω1

t − ω
2
t |) ∧ 1].

� is the classical canonical space and ω = (ωt )t≥0 is the corresponding canonical process. It is
well known that in this canonical space there exists a Wiener measure (�,F , P) under which
the canonical process Bt (ω) = ωt is a d-dimensional Brownian motion.

For each fixed T ≥ 0 we consider the following space of random variables:

L0
i p(HT ) := {X (ω) = φ(ωt1 , . . . , ωtm ), ∀m ≥ 1, t1, . . . , tm ∈ [0, T ], φ ∈ li p(Rd×m)}.

It is clear that {L0
i p(Ht )}t≥0 constitutes a family of sublattices such that L0

i p(Ht ) ⊆ L0
i p(HT ), for

t ≤ T <∞. L0
i p(Ht ) represents the past history of ω before the time t . Its completion will play

the same role as the Brownian filtration F B
t in the classical stochastic analysis. We also define

L0
i p(H) :=

∞⋃
n=1

L0
i p(Hn).

Remark 13. lip(Rd×m), L0
i p(HT ) and L0

i p(H) are vector lattices. Moreover, since φ and ψ ∈

lip(Rd×m) implies φ · ψ ∈ lip(Rd×m), thus X , Y ∈ L0
i p(HT ) implies X · Y ∈ L0

i p(HT ); X and

Y ∈ L0
i p(H) implies X · Y ∈ L0

i p(H).
We will consider the canonical space and set Bt (ω) = ωt , t ∈ [0,∞) for ω ∈ Ω .

Definition 14. The canonical process B is called a (d-dimensional) G-Brownian motion under a
nonlinear expectation Ê defined on L0

i p(H) if
(i) For each s, t ≥ 0 and ψ ∈ lip(Rd), Bt and Bt+s − Bs are identically distributed:

Ê[ψ(Bt+s − Bs)] = Ê[ψ(Bt )] = PG
t (ψ).

(ii) For each m = 1, 2, . . . , 0 ≤ t1 < · · · < tm < ∞, the increment Btm − Btm−1 is
“backwardly” independent from Bt1 , . . . , Btm−1 in the following sense: for each φ ∈ lip(Rd×m),

Ê[φ(Bt1 , . . . , Btm−1 , Btm )] = Ê[φ1(Bt1 , . . . , Btm−1)],
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where φ1(x1, . . . , xm−1) = Ê[φ(x1, . . . , xm−1, Btm − Btm−1 + xm−1)], x1, . . . , xm−1
∈ Rd .

The related conditional expectation of φ(Bt1 , . . . , Btm ) under Htk is defined by

Ê[φ(Bt1 , . . . , Btk , . . . , Btm )|Htk ] = φm−k(Bt1 , . . . , Btk ), (10)

where

φm−k(x
1, . . . , xk) = Ê[φ(x1, . . . , xk, Btk+1 − Btk + xk, . . . , Btm − Btk + xk)].

It is proved in [40] that Ê[·] consistently defines a nonlinear expectation on the vector
lattice L0

i p(HT ) as well as on L0
i p(H) satisfying (a)–(e) in Definition 1. It follows that Ê[|X |],

X ∈ L0
i p(HT ) (resp. L0

i p(H)), is a norm and thus L0
i p(HT ) (resp. L0

i p(H)) can be extended,

under this norm, to a Banach space. We denote this space by L1
G(HT ) (resp. L1

G(H)). For each
0 ≤ t ≤ T < ∞, we have L1

G(Ht ) ⊆ L1
G(HT ) ⊂ L1

G(H). In L1
G(HT ) (resp. L1

G(HT )), Ê[·]
still satisfies (a)–(e) in Definition 1.

Remark 15. It is suggestive to denote L0
i p(Ht ) by H0

t and L1
G(Ht ) by Ht , L1

G(H) by H and

thus consider the conditional expectation Ê[·|Ht ] as a projective mapping from H to Ht . The
notation L1

G(Ht ) is due to the similarity with L1(Ω ,Ft , P) in classical stochastic analysis.

Definition 16. The expectation Ê[·] : L1
G(H) 7→ R introduced through the above procedure

is called G-expectation, or G-Brownian expectation. The corresponding canonical process B is
said to be a G-Brownian motion under Ê[·].

For a given p > 1, we also define L p
G(H) = {X ∈ L1

G(H), |X |p ∈ L1
G(H)}. L p

G(H) is also
a Banach space under the norm ‖X‖p := (Ê[|X |p])1/p. We have (see Appendix)

‖X + Y‖p ≤ ‖X‖p + ‖Y‖p

and, for each X ∈ L p
G , Y ∈ Lq

G(Q) with 1
p +

1
q = 1,

‖XY‖ = Ê[|XY |] ≤ ‖X‖p ‖X‖q .

With this we have ‖X‖p ≤ ‖X‖p′ if p ≤ p′.
We now consider the conditional expectation introduced Definition 14 (see (10)). For each

fixed t = tk ≤ T , the conditional expectation Ê[·|Ht ] : L0
i p(HT ) 7→ L0

i p(Ht ) is a continuous

mapping under ‖·‖. Indeed, we have Ê[Ê[X |Ht ]] = Ê[X ], X ∈ L0
i p(HT ) and, since PG

t is
subadditive,

Ê[X |Ht ] − Ê[Y |Ht ] ≤ Ê[X − Y |Ht ] ≤ Ê[|X − Y ||Ht ].

We thus obtain

Ê[Ê[X |Ht ] − Ê[Y |Ht ]] ≤ Ê[X − Y ]

and ∥∥∥Ê[X |Ht ] − Ê[Y |Ht ]

∥∥∥ ≤ ‖X − Y‖ .

It follows that Ê[·|Ht ] can be also extended as a continuous mapping L1
G(HT ) 7→ L1

G(Ht ). If
the above T is not fixed, then we can obtain Ê[·|Ht ] : L1

G(H) 7→ L1
G(Ht ).
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Proposition 17. We list the properties of Ê[·|Ht ], t ∈ [0, T ], that hold in L0
i p(HT ) and still hold

for X, Y ∈ L1
G(HT ):

(i) Ê[X |Ht ] = X, for X ∈ L1
G(Ht ), t ≤ T .

(ii) If X ≥ Y , then Ê[X |Ht ] ≥ Ê[Y |Ht ].
(iii) Ê[X |Ht ] − Ê[Y |Ht ] ≤ Ê[X − Y |Ht ].
(iv) Ê[Ê[X |Ht ]|Hs] = Ê[X |Ht∧s], Ê[Ê[X |Ht ]] = Ê[X ].
(v) Ê[X + η|Ht ] = Ê[X |Ht ] + η, η ∈ L1

G(Ht ).
(vi) Ê[ηX |Ht ] = η

+Ê[X |Ht ] + η
−Ê[−X |Ht ], for bounded η ∈ L1

G(Ht ).
(vii) We have the following independence:

Ê[X |Ht ] = Ê[X ], ∀X ∈ L1
G(Ht

T ), ∀T ≥ 0,

where L1
G(Ht

T ) is the extension, under ‖·‖, of L0
i p(Ht

T )which consists of random variables
of the form φ(Bt

t1 , Bt
t2 , . . . , Bt

tm ), φ ∈ lip(Rm), t1, . . . , tm ∈ [0, T ], m = 1, 2, . . . . Here we
define

Bt
s = Bt+s − Bt , s ≥ 0.

(viii) The increments of B are identically distributed:

Ê[φ(Bt
t1 , Bt

t2 , . . . , Bt
tm )] = Ê[φ(Bt1 , Bt2 , . . . , Btm )].

The meaning of the independence in (vii) is similar to the classical one:

Definition 18. An Rn valued random variable Y ∈ (L1
G(H))n is said to be independent of Ht

for some given t if for each φ ∈ lip(Rn) we have

Ê[φ(Y )|Ht ] = Ê[φ(Y )].

It is seen that the above property (vii) also holds for the situation X ∈ L1
G(Ht ) where L1

G(Ht )

is the completion of the sublattice ∪T≥0 L1
G(Ht

T ) under ‖·‖.
From the above results we have

Proposition 19. For each fixed t ≥ 0, (Bt
s)s≥0 is a G-Brownian motion in L1

G(Ht ) under the

same G-expectation Ê[·].

Remark 20. We can prove, using Lemma 7, that B̃ = (
√
λBt/λ)t≥0 is also a G-Brownian

motion. This is the scaling property of the G-Brownian motion, which is the same as that of
the usual Brownian motion.

The following property is very useful.

Proposition 21. Let X, Y ∈ L1
G(H) be such that Ê[Y |Ht ] = −Ê[−Y |Ht ], for some t ∈ [0, T ].

Then we have

Ê[X + Y |Ht ] = Ê[X |Ht ] + Ê[Y |Ht ].

In particular, if Ê[Y |Ht ] = Ê[−Y |Ht ] = 0, then Ê[X + Y |Ht ] = Ê[X |Ht ].

Proof. This follows from the two properties Ê[X + Y |Ht ] ≤ Ê[X |Ht ] + Ê[Y |Ht ] and

Ê[X + Y |Ht ] ≥ Ê[X |Ht ] − Ê[−Y |Ht ] = Ê[X |Ht ] + Ê[Y |Ht ]. �
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Example 22. From the last relation of Proposition 12(ii), we have

Ê[(ABt , Bt )] = σAt = 2G(A)t, ∀A ∈ Sd .

More generally, for each s ≤ t and η = (ηi j )di, j=1 ∈ L2
G(Hs;Sd),

Ê[(ηBs
t , Bs

t )|Hs] = σηt = 2G(η)t, s, t ≥ 0. (11)

Definition 23. We will use, in the rest of this paper, the notation

Ba
t = (a, Bt ), for each a = (a1, . . . , ad)

T
∈ Rd . (12)

From Lemma 9 and Remark 10,

Ê[φ(Ba
t )] = PG

t (φ((a, ·))) = PGa
t (φ),

where PGa is the (one-dimensional) Ga-normal distribution. Thus, according to Definition 14
for d-dimensional G-Brownian motion, Ba forms a one-dimensional Ga-Brownian motion for
which the Ga-expectation coincides with Ê[·].

Example 24. For each 0 ≤ s − t , we have

Ê[ψ(Bt − Bs)|Hs] = Ê[ψ(Bt − Bs)].

If X is in L1
G(Ht ) and bounded, φ is a real convex function on R and at least not growing too

fast, then

Ê[Xφ(Ba
T − Ba

t )|Ht ] = X+Ê[φ(Ba
T − Ba

t )|Ht ] + X−Ê[−φ(Ba
T − Ba

t )|Ht ]

=
X+√

2π(T − t)σaaT

∫
∞

−∞

φ(x) exp
(
−

x2

2(T − t)σaaT

)
dx

−
X−√

2π(T − t)|σ−aaT |

∫
∞

−∞

φ(x) exp
(
−

x2

2(T − t)|σ−aaT |

)
dx .

In particular, for n = 1, 2, . . . ,

Ê[|Ba
t − Ba

s |
n
|Hs] = Ê[|Ba

t−s |
n
]

=
1√

2π(t − s)σaaT

∫
∞

−∞

|x |n exp
(
−

x2

2(t − s)σaaT

)
dx .

But we have Ê[−|Ba
t − Ba

s |
n
|Hs] = Ê[−|Ba

t−s |
n
] which is 0 when σ−aaT = 0 and

−1√
2π(t − s)|σ−aaT |

∫
∞

−∞

|x |n exp
(
−

x2

2(t − s)|σ−aaT |

)
dx, if σ−aaT < 0.

Exactly as in classical cases, we have Ê[Ba
t − Ba

s |Hs] = 0 and

Ê[(Ba
t − Ba

s )
2
|Hs] = σaaT(t − s), Ê[(Ba

t − Ba
s )

4
|Hs] = 3σ 2

aaT(t − s)2,

Ê[(Ba
t − Ba

s )
6
|Hs] = 15σ 3

aaT(t − s)3, Ê[(Ba
t − Ba

s )
8
|Hs] = 105σ 4

aaT(t − s)4,

Ê[|Ba
t − Ba

s ||Hs] =

√
2(t − s)σaaT
√
π

, Ê[|Ba
t − Ba

s |
3
|Hs] =

2
√

2[(t − s)σaaT ]
3/2

√
π

,



2234 S. Peng / Stochastic Processes and their Applications 118 (2008) 2223–2253

Ê[|Ba
t − Ba

s |
5
|Hs] = 8

√
2[(t − s)σaaT ]

5/2
√
π

.

Example 25. For each n = 1, 2, . . . , 0 ≤ t ≤ T and X ∈ L1
G(Ht ), we have

Ê[X (Ba
T − Ba

t )|Ht ] = X+Ê[(Ba
T − Ba

t )|Ht ] + X−Ê[−(Ba
T − Ba

t )|Ht ] = 0.

This, together with Proposition 21, yields

Ê[Y + X (Ba
T − Ba

t )|Ht ] = Ê[Y |Ht ], Y ∈ L1
G(H).

We also have

Ê[X (Ba
T − Ba

t )
2
|Ht ] = X+Ê[(Ba

T − Ba
t )

2
|Ht ] + X−Ê[−(Ba

T − Ba
t )

2
|Ht ]

= [X+σaaT + X−σ−aaT ](T − t).

Remark 26. It is clear that we can define an expectation E[·] on L0
i p(H) in the same way as in

Definition 14 with the standard normal distribution P0
1 (·) in place of PG

1 (·). If Id ∈ Γ , then it
follows from (3) that P0

1 (·) is dominated by PG
1 (·) in the sense

P0
1 (φ)− P0

1 (ψ) ≤ PG
1 (φ − ψ).

Then E[·] can be continuously extended to L1
G(H). E[·] is a linear expectation under which

(Bt )t≥0 behaves as a Brownian motion. We have

− Ê[−X ] ≤ E0
[X ] ≤ Ê[X ], −Ê[−X |Ht ] ≤ E0

[X |Ht ] ≤ Ê[X |Ht ]. (13)

More generally, if Γ ′ ⊂ Γ , since the corresponding P ′ = PGΓ ′ is dominated by PG
= PGΓ ,

thus the corresponding expectation Ê′ is well defined in L1
G(H) and Ê′ is dominated by Ê:

Ê′[X ] − Ê′[Y ] ≤ Ê[X − Y ], X, Y ∈ L1
G(H).

Such an extension through the above type of domination relations was discussed in detail
in [40]. With this domination we then can introduce a large kind of time consistent linear or
nonlinear expectations and the corresponding conditional expectations, not necessarily positive
homogeneous and/or subadditive, as continuous functionals in L1

G(H). See Example 42 for a
further discussion.

Example 27. Since

Ê[2Ba
s (B

a
t − Ba

s )|Hs] = Ê[−2Ba
s (B

a
t − Ba

s )|Hs] = 0,

we have

Ê[(Ba
t )

2
− (Ba

s )
2
|Hs] = Ê[(Ba

t − Ba
s + Ba

s )
2
− (Ba

s )
2
|Hs]

= Ê[(Ba
t − Ba

s )
2
+ 2(Ba

t − Ba
s )B

a
s |Hs]

= σaaT(t − s)

and

Ê[((Ba
t )

2
− (Ba

s )
2)2|Hs] = Ê[{(Ba

t − Ba
s + Ba

s )
2
− (Ba

s )
2
}
2
|Hs]

= Ê[{(Ba
t − Ba

s )
2
+ 2(Ba

t − Ba
s )B

a
s }

2
|Hs]
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= Ê[(Ba
t − Ba

s )
4
+ 4(Ba

t − Ba
s )

3 Ba
s + 4(Ba

t − Ba
s )

2(Ba
s )

2
|Hs]

≤ Ê[(Ba
t − Ba

s )
4
] + 4Ê[|Ba

t − Ba
s |

3
]|Ba

s | + 4σaaT(t − s)(Ba
s )

2

= 3σ 2
aaT(t − s)2 + 8

√
2
π
[σaaT(t − s)]3/2|Ba

s | + 4σaaT(t − s)(Ba
s )

2.

Remark 28. A G-Brownian motion can be characterized as a zero-mean process with
independent and stationary increments such that Ê[‖Bt‖

3
]/t → 0 as t ↓ 0 (see [44]).

5. Itô’s integral of G-Brownian motion

5.1. Bochner’s integral

Definition 29. For T ∈ R+, a partition πT of [0, T ] is a finite ordered subset π = {t1, . . . , tN }

such that 0 = t0 < t1 < · · · < tN = T ,

µ(πT ) = max{|ti+1 − ti |, i = 0, 1, . . . , N − 1}.

We use πN
T = {t

N
0 < t N

1 < · · · < t N
N } to denote a sequence of partitions of [0, T ] such that

limN→∞ µ(π
N
T ) = 0.

Let p ≥ 1 be fixed. We consider the following type of simple processes: for a given partition
{t0, . . . , tN } = πT of [0, T ], we set

ηt (ω) =

N−1∑
k=0

ξk(ω)I[tk ,tk+1)(t),

where ξk ∈ L p
G(Htk ), k = 0, 1, 2, . . . , N − 1 are given. The collection of these processes is

denoted by M p,0
G (0, T ).

Definition 30. For an η ∈ M1,0
G (0, T ) with ηt =

∑N−1
k=0 ξk(ω)I[tk ,tk+1)(t), the related Bochner

integral is∫ T

0
ηt (ω)dt =

N−1∑
k=0

ξk(ω)(tk+1 − tk).

Remark 31. We set, for each η ∈ M1,0
G (0, T ),

ẼT [η] :=
1
T

∫ T

0
Ê[ηt ]dt =

1
T

N−1∑
k=0

Êξk(ω)(tk+1 − tk).

It is easy to check that ÊT : M1,0
G (0, T ) 7−→ R forms a nonlinear expectation satisfying (a)–(e)

of Definition 1. We then can introduce a natural norm

‖η‖1T = ẼT [|η|] =
1
T

∫ T

0
Ê[|ηt |]dt.

Under this norm M1,0
G (0, T ) can extended to M1

G(0, T ) which is a Banach space.



2236 S. Peng / Stochastic Processes and their Applications 118 (2008) 2223–2253

Definition 32. For each p ≥ 1, we denote by M p
G(0, T ) the completion of M p,0

G (0, T ) under the
norm (

1
T

∫ T

0

∥∥|ηt |
p
∥∥ dt

)1/p

=

(
1
T

N−1∑
k=0

Ê[|ξk(ω)|
p
](tk+1 − tk)

)1/p

.

We observe that

Ê
[∣∣∣∣∫ T

0
ηt (ω)dt

∣∣∣∣] ≤ N−1∑
k=0

‖ξk(ω)‖ (tk+1 − tk) =
∫ T

0
Ê[|ηt |]dt. (14)

We then have

Proposition 33. The linear mapping
∫ T

0 ηt (ω)dt : M1,0
G (0, T ) 7→ L1

G(HT ) is continuous and
thus can be continuously extended to M1

G(0, T ) 7→ L1
G(HT ). We still denote this extended

mapping by
∫ T

0 ηt (ω)dt , η ∈ M1
G(0, T ).

Since M p
G(0, T ) ⊂ M1

G(0, T ) for p ≥ 1, this definition makes sense for η ∈ M p
G(0, T ).

5.2. Itô’s integral of G-Brownian motion

We still use Ba
t := (a, Bt ) as in (12).

Definition 34. For each η ∈ M2,0
G (0, T ) of the form ηt (ω) =

∑N−1
k=0 ξk(ω)I[tk ,tk+1)(t), we define

I (η) =
∫ T

0
η(s)dBa

s :=

N−1∑
k=0

ξk(B
a
tk+1
− Ba

tk ).

Lemma 35. We have, for each η ∈ M2,0
G (0, T ),

Ê
[∫ T

0
η(s)dBa

s

]
= 0, (15)

Ê

[(∫ T

0
η(s)dBa

s

)2]
≤ σaaT

∫ T

0
Ê[η2(s)]ds. (16)

Consequently, the linear mapping I : M2,0
G (0, T ) 7−→ L2

G(HT ) is continuous and thus can be
continuously extended to I : M2

G(0, T ) 7−→ L2
G(HT ).

Definition 36. We define, for a fixed η ∈ M2
G(0, T ), the stochastic calculus∫ T

0
η(s)dBa

s := I (η).

It is clear that (15) and (16) still hold for η ∈ M2
G(0, T ).
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Proof of Lemma 35. From Example 25, for each k,

Ê[ξk(B
a
tk+1
− Ba

tk )|Htk ] = 0.

We have

Ê
[∫ T

0
η(s)dBa

s

]
= Ê

[∫ tN−1

0
η(s)dBa

s + ξN−1(B
a
tN
− Ba

tN−1
)

]
= Ê

[∫ tN−1

0
η(s)dBa

s + Ê[ξN−1(B
a
tN
− Ba

tN−1
)|HtN−1 ]

]
= Ê

[∫ tN−1

0
η(s)dBa

s

]
.

We then can repeat this procedure to obtain (15). We now prove (16):

Ê

[(∫ T

0
η(s)dBa

s

)2]
= Ê

[(∫ tN−1

0
η(s)dBa

s + ξN−1(B
a
tN
− Ba

tN−1
)

)2
]

= Ê

[(∫ tN−1

0
η(s)dBa

s

)2

+ Ê
[

2
(∫ tN−1

0
η(s)dBa

s

)
ξN−1(B

a
tN
− Ba

tN−1
)+ ξ2

N−1(B
a
tN
− Ba

tN−1
)2|HtN−1

]]

= Ê

[(∫ tN−1

0
η(s)dBa

s

)2

+ ξ2
N−1σaaT(tN − tN−1)

]
.

Thus Ê[(
∫ tN

0 η(s)dBa
s )

2
] ≤ Ê[(

∫ tN−1
0 η(s)dBa

s )
2
]+ Ê[ξ2

N−1]σaaT(tN − tN−1). We then repeat this
procedure to deduce

Ê

[(∫ T

0
η(s)dBs

)2]
≤ σaaT

N−1∑
k=0

Ê[(ξk)
2
](tk+1 − tk) =

∫ T

0
Ê[(η(t))2]dt. �

We list some main properties of Itô’s integral of G-Brownian motion. We define, for some
0 ≤ s ≤ t ≤ T ,∫ t

s
ηudBa

u :=

∫ T

0
I[s,t](u)ηudBa

u .

We have

Proposition 37. Let η, θ ∈ M2
G(0, T ) and let 0 ≤ s ≤ r ≤ t ≤ T . Then in L1

G(HT ) we have:

(i)
∫ t

s ηudBa
u =

∫ r
s ηudBa

u +
∫ t

r ηudBa
u .

(ii)
∫ t

s (αηu + θu)dBa
u = α

∫ t
s ηudBa

u +
∫ t

s θudBa
u , if α is bounded and in L1

G(Hs),

(iii) Ê[X +
∫ T

r ηudBa
u |Hs] = Ê[X |Hs], ∀X ∈ L1

G(H),
(iv) Ê[(

∫ T
r ηudBa

u )
2
|Hs] ≤ σaaT

∫ T
r Ê[|ηu |

2
|Hs]du.
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5.3. Quadratic variation process of G-Brownian motion

We now consider the quadratic variation of G-Brownian motion. It concentrically reflects
the characteristic of the ‘uncertainty’ part of the G-Brownian motion B. This makes a major
difference from the classical Brownian motion.

Let πN
t , N = 1, 2, . . . , be a sequence of partitions of [0, t]. We consider

(Ba
t )

2
=

N−1∑
k=0

[(Ba
t N
k+1
)2 − (Ba

t N
k
)2]

=

N−1∑
k=0

2Ba
t N
k
(Ba

t N
k+1
− Ba

t N
k
)+

N−1∑
k=0

(Ba
t N
k+1
− Ba

t N
k
)2.

As µ(πN
t ) = max0≤k≤N−1(t N

k+1 − t N
k ) → 0, the first term of the right side tends to

∫ t
0 Ba

s dBa
s .

The second term must converge. We denote its limit by 〈Ba〉t , i.e.,

〈
Ba〉

t = lim
µ(πN

t )→0

N−1∑
k=0

(Ba
t N
k+1
− Ba

t N
k
)2 = (Ba

t )
2
− 2

∫ t

0
Ba

s dBa
s . (17)

By the above construction, 〈Ba〉t , t ≥ 0, is an increasing process with 〈Ba〉0 = 0. We call it
the quadratic variation process of the G-Brownian motion Ba. Clearly 〈Ba〉 is an increasing
process. It is also clear that, for each 0 ≤ s ≤ t and for each smooth real function ψ such that
ψ(〈Ba〉t−s) ∈ L1

G(Ht−s), we have Ê[ψ(〈Ba〉t−s)] = Ê[ψ(〈Ba〉t − 〈B
a〉s)]. We also have〈

Ba〉
t =

〈
B−a〉

t =
〈
−Ba〉

t .

It is important to keep in mind that 〈Ba〉t is not a deterministic process except in the case
σaaT = −σ−aaT and thus Ba becomes a classical Brownian motion. In fact we have

Lemma 38. For each 0 ≤ s ≤ t <∞

Ê
[〈

Ba〉
t −

〈
Ba〉

s |Hs
]
= σaaT(t − s), (18)

Ê
[
−
(〈

Ba〉
t −

〈
Ba〉

s

)
|Hs

]
= σ−aaT(t − s). (19)

Proof. By the definition of 〈Ba〉 and Proposition 37(iii), then Example 27,

Ê
[〈

Ba〉
t −

〈
Ba〉

s |Hs
]
= Ê

[
(Ba

t )
2
− (Ba

s )
2
− 2

∫ t

s
Ba

u dBa
u |Hs

]
= Ê[(Ba

t )
2
− (Ba

s )
2
|Hs] = σaaT(t − s).

We then have (18). (19) can be proved analogously by using the equality Ê[−((Ba
t )

2
−

(Ba
s )

2)|Hs] = σ−aaT(t − s). �

An interesting new phenomenon of our G-Brownian motion is that its quadratic process 〈B〉
also has independent increments. In fact, we have

Lemma 39. An increment of 〈Ba〉 is the quadratic variation of the corresponding increment of
Ba, i.e., for each fixed s ≥ 0,〈

Ba〉
t+s −

〈
Ba〉

s =
〈
(Bs)a

〉
t ,
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where Bs
t = Bt+s − Bs , t ≥ 0 and (Bs)at = (a, Bt

s).

Proof.〈
Ba〉

t+s −
〈
Ba〉

s = (B
a
t+s)

2
− 2

∫ t+s

0
Ba

u dBa
u −

(
(Ba

s )
2
− 2

∫ s

0
Ba

u dBa
u

)
= (Ba

t+s − Ba
s )

2
− 2

∫ t+s

s
(Ba

u − Ba
s )dBa

u

= (Ba
t+s − Ba

s )
2
− 2

∫ t

0
(Ba

s+u − Ba
s )d(B

a
s+u − Ba

s )

=
〈
(Bs)a

〉
t . �

Lemma 40. We have

Ê
[〈

Ba〉2
t

]
= Ê

[(〈
Ba〉

t+s −
〈
Ba〉

s

)2
|Hs

]
= σ 2

aaT t2, s, t ≥ 0. (20)

Proof. We set φ(t) := Ê[〈Ba〉2t ].

φ(t) = Ê

[{
(Ba

t )
2
− 2

∫ t

0
Ba

u dBa
u

}2
]

≤ 2Ê
[(

Ba
t

)4]
+ 8Ê

[(∫ t

0
Ba

u dBa
u

)2
]

≤ 6σ 2
aaT t2

+ 8σaaT

∫ t

0
Ê[(Ba

u )
2
]du

= 10σ 2
aaT t2.

This also implies Ê[(〈Ba〉t − 〈B
a〉s)

2
] = φ(t − s) ≤ 10σ 2

aaT(t − s)2. For each s ∈ [0, t),

φ(t) = Ê
[(〈

Ba〉
s +

〈
Ba〉

t −
〈
Ba〉

s

)2]
≤ Ê

[(〈
Ba〉

s

)2]
+ Ê

[(〈
Ba〉

t −
〈
Ba〉

s

)2]
+ 2Ê

[(〈
Ba〉

t −
〈
Ba〉

s

) 〈
Ba〉

s

]
= φ(s)+ φ(t − s)+ 2Ê

[
Ê
[(〈

Ba〉
t −

〈
Ba〉

s

)
|Hs

] 〈
Ba〉

s

]
= φ(s)+ φ(t − s)+ 2σ 2

aaTs(t − s).

We set δN = t/N , t N
k = kt/N = kδN for a positive integer N . By the above inequalities

φ(t N
N ) ≤ φ(t

N
N−1)+ φ(δN )+ 2σ 2

aaT t N
N−1δN

≤ φ(t N
N−2)+ 2φ(δN )+ 2σ 2

aaT(t
N
N−1 + t N

N−2)δN

....

We then have

φ(t) ≤ Nφ(δN )+ 2σ 2
aaT

N−1∑
k=0

t N
k δN ≤ 10t2σ 2

aaT/N + 2σ 2
aaT

N−1∑
k=0

t N
k δN .
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Let N → ∞; we have φ(t) ≤ 2σ 2
aaT

∫ t
0 sds = σ 2

aaT t2. Thus Ê[〈Ba〉2t ] ≤ σ
2
aaT t2. This, together

with Ê[〈Ba〉2t ] ≥ E0
[〈Ba〉2t ] = σ 2

aaT t2, implies (20). In the last step, the classical normal

distribution P0
1 , or N (0, γ0γ

T
0 ), γ0 ∈ Γ , is chosen such that

tr[γ0γ
T
0 aaT
] = σ 2

aaT = sup
γ∈Γ

tr[γ γ TaaT
]. �

Similarly we have

Ê
[(〈

Ba〉
t −

〈
Ba〉

s

)3
|Hs

]
= σ 3

aaT(t − s)3,

Ê
[(〈

Ba〉
t −

〈
Ba〉

s

)4
|Hs

]
= σ 4

aaT(t − s)4.
(21)

Proposition 41. Let 0 ≤ s ≤ t , ξ ∈ L1
G(Hs), X ∈ L1

G(H). Then

Ê
[

X + ξ((Ba
t )

2
− (Ba

s )
2)
]
= Ê

[
X + ξ(Ba

t − Ba
s )

2
]

= Ê
[
X + ξ

(〈
Ba〉

t −
〈
Ba〉

s

)]
.

Proof. By (17) and applying Proposition 21, we have

Ê
[

X + ξ((Ba
t )

2
− (Ba

s )
2)
]
= Ê

[
X + ξ

(〈
Ba〉

t −
〈
Ba〉

s + 2
∫ t

s
Ba

u dBa
u

)]
= Ê

[
X + ξ

(〈
Ba〉

t −
〈
Ba〉

s

)]
.

We also have

Ê
[

X + ξ((Ba
t )

2
− (Ba

s )
2)
]
= Ê[X + ξ{(Ba

t − Ba
s )

2
+ 2(Ba

t − Ba
s )B

a
s }]

= Ê[X + ξ(Ba
t − Ba

s )
2
]. �

Example 42. We assume that in a financial market a stock price (St )t≥0 is observed. Let
Bt = log(St ), t ≥ 0, be a one-dimensional G-Brownian motion (d = 1) with Γ = [σ∗, σ ∗],
with fixed σ∗ ∈ [0, 1

2 ) and σ ∗ ∈ [1,∞). Two traders a and b in a same bank are using their
own statistics to price a contingent claim X = 〈B〉T with maturity T . Suppose, for example,
under the probability measure Pa of a, B is a (classical) Brownian motion whereas under Pb of
b, 1

2 B is a Brownian motion, where Pa (resp. Pb) is a classical probability measure with its linear

expectation Êa (resp. Êb) generated by the heat equation ∂t u = 1
2∂

2
xx u (resp. ∂t u = 1

4∂
2
xx u).

Since Êa and Êb are both dominated by Ê in the sense of (3), they can be both well defined as a
linear bounded functional in L1

G(H). This framework cannot be provided by just using a classical
probability space because it is known that 〈B〉T = T , Pa-a.s., and 〈B〉T =

T
4 , Pb-a.s. Thus there

is no probability measure on Ω with respect to which Pa and Pb are both absolutely continuous.
Practically this sublinear expectation Ê provides a realistic tool of a dynamic risk measure for
a risk supervisor of the traders a and b: given a risk position X ∈ L1

G(HT ) we always have
Ê[−X |Ht ] ≥ Êa

[−X |Ht ] ∨ Êb
[−X |Ht ] for the loss −X of this position. The meaning is that

the supervisor uses a more sensitive risk measure. Clearly no linear expectation can play this role.
The subset Γ represents the uncertainty of the volatility model of a risk regulator. The larger the
subset Γ , the bigger the uncertainty, and thus the stronger the corresponding Ê.
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It is worth considering creating a hierarchic and dynamic risk control system for a bank, or a
banking system, in which the Chief Risk Officer (CRO) uses Ê = ÊG for her risk measure and
the Risk Officer of the i th division of the bank uses Êi

= ÊGi for his, where

G(A) =
1
2

sup
γ∈Γ

tr[γ γ T A], Gi (A) =
1
2

sup
γ∈Γi

tr[γ γ T A], Γi ⊂ Γ , i = 1, . . . , I.

Thus Êi is dominated by Ê for each i . For a large banking system we can even consider creating
Êi j
= ÊGi j for its (i, j)th subdivision. The reasoning is: in general, a risk regulator’s statistics

and knowledge of a specific risk position X are less than those of a trader who is concretely
involved in the business of the product X .

To define the integration of a process η ∈ M1
G(0, T ) with respect to d 〈Ba〉, we first define a

mapping:

Q0,T (η) =

∫ T

0
η(s)d

〈
Ba〉

s :=

N−1∑
k=0

ξk

(〈
Ba〉

tk+1
−
〈
Ba〉

tk

)
: M1,0

G (0, T ) 7→ L1(HT ).

Lemma 43. For each η ∈ M1,0
G (0, T ),

Ê[|Q0,T (η)|] ≤ σaaT

∫ T

0
Ê[|ηs |]ds, (22)

Thus Q0,T : M1,0
G (0, T ) 7→ L1(HT ) is a continuous linear mapping. Consequently, Q0,T can be

uniquely extended to M1
G(0, T ). We still define this mapping by∫ T

0
η(s)d

〈
Ba〉

s = Q0,T (η), η ∈ M1
G(0, T ).

We still have

Ê
[∣∣∣∣∫ T

0
η(s)d

〈
Ba〉

s

∣∣∣∣] ≤ σaaT

∫ T

0
Ê[|ηs |]ds, ∀η ∈ M1

G(0, T ). (23)

Proof. By applying Lemma 38, (22) can be checked as follows:

Ê

[∣∣∣∣∣N−1∑
k=0

ξk

(〈
Ba〉

tk+1
−
〈
Ba〉

tk

)∣∣∣∣∣
]
≤

N−1∑
k=0

Ê
[
|ξk | · Ê

[〈
Ba〉

tk+1
−
〈
Ba〉

tk
|Htk

]]
=

N−1∑
k=0

Ê[|ξk |]σaaT(tk+1 − tk)

= σaaT

∫ T

0
Ê[|ηs |]ds. �

We have the following isometry.

Proposition 44. Let η ∈ M2
G(0, T ),

Ê

[(∫ T

0
η(s)dBa

s

)2]
= Ê

[∫ T

0
η2(s)d

〈
Ba〉

s

]
. (24)
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Proof. We first consider η ∈ M2,0
G (0, T ) with the form

ηt (ω) =

N−1∑
k=0

ξk(ω)I[tk ,tk+1)(t)

and thus
∫ T

0 η(s)dBa
s :=

∑N−1
k=0 ξk(Ba

tk+1
− Ba

tk ) . By Proposition 21 we have

Ê[X + 2ξk(B
a
tk+1
− Ba

tk )ξl(B
a
tl+1
− Ba

tl )] = Ê[X ], for X ∈ L1
G(H), l 6= k.

Thus

Ê

[(∫ T

0
η(s)dBa

s

)2]
= Ê

(N−1∑
k=0

ξk(B
a
tk+1
− Ba

tk )

)2
 = Ê

[
N−1∑
k=0

ξ2
k (B

a
tk+1
− Ba

tk )
2

]
.

This, together with Proposition 41, implies that

Ê

[(∫ T

0
η(s)dBa

s

)2]
= Ê

[
N−1∑
k=0

ξ2
k

(〈
Ba〉

tk+1
−
〈
Ba〉

tk

)]
= Ê

[∫ T

0
η2(s)d

〈
Ba〉

s

]
.

Thus (24) holds for η ∈ M2,0
G (0, T ). We thus can continuously extend this equality to the case

η ∈ M2
G(0, T ) and obtain (24). �

5.4. Mutual variation processes for G-Brownian motion

Let a = (a1, . . . , ad)
T and ā = (ā1, . . . , ād)

T be two given vectors in Rd . We then have their
quadratic variation processes 〈Ba〉 and

〈
B ā〉. We then can define their mutual variation process

by 〈
Ba, B ā

〉
t
:=

1
4

[〈
Ba
+ B ā

〉
t
−

〈
Ba
− B ā

〉
t

]
=

1
4

[〈
Ba+ā

〉
t
−

〈
Ba−ā

〉
t

]
.

Since
〈
Ba−ā〉

=
〈
B ā−a〉

=
〈
−Ba−ā〉, we see that

〈
Ba, B ā〉

t =
〈
B ā, Ba〉

t . In particular we have
〈Ba, Ba〉 = 〈Ba〉. Let πN

t , N = 1, 2, . . . , be a sequence of partitions of [0, t]. We observe that

N−1∑
k=0

(Ba
t N
k+1
− Ba

t N
k
)(B ā

t N
k+1
− B ā

t N
k
) =

1
4

N−1∑
k=0

[(Ba+ā
tk+1
− Ba+ā

tk )2 − (Ba−ā
tk+1
− Ba−ā

tk )2].

Thus as µ(πN
t )→ 0, we have

lim
N→0

N−1∑
k=0

(Ba
t N
k+1
− Ba

t N
k
)(B ā

t N
k+1
− B ā

t N
k
) =

〈
Ba, B ā

〉
t
.

We also have〈
Ba, B ā

〉
t
=

1
4

[〈
Ba+ā

〉
t
−

〈
Ba−ā

〉
t

]
=

1
4

[
(Ba+ā

t )2 − 2
∫ t

0
Ba+ā

s dBa+ā
s − (Ba−ā

t )2 + 2
∫ t

0
Ba−ā

s dBa−ā
s

]
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= Ba
t B ā

t −

∫ t

0
Ba

s dB ā
s −

∫ t

0
B ā

s dBa
s .

Now for each η ∈ M1
G(0, T ) we can consistently define∫ T

0
ηsd

〈
Ba, B ā

〉
s
=

1
4

∫ T

0
ηsd

〈
Ba+ā

〉
s
−

1
4

∫ T

0
ηsd

〈
Ba−ā

〉
s
.

Lemma 45. Let ηN
∈ M1,0

G (0, T ), N = 1, 2, . . . , be of the form

ηN
t (ω) =

N−1∑
k=0

ξ N
k (ω)I[t N

k ,t
N
k+1)

(t)

with µ(πN
T ) → 0 and ηN

→ η in M1
G(0, T ) as N → ∞. Then we have the following

convergence in L1
G(HT ):∫ T

0
ηN (s)d

〈
Ba, B ā

〉
s
:=

N−1∑
k=0

ξ N
k (B

a
t N
k+1
− Ba

t N
k
)(B ā

t N
k+1
− B ā

t N
k
)

→

∫ T

0
η(s)d

〈
Ba, B ā

〉
s
.

5.5. Itô’s formula for G-Brownian motion

We have the corresponding Itô’s formula of Φ(X t ) for a “G-Itô process” X . For
simplification, we only treat the case where the function Φ is sufficiently regular. For notational
simplification, we define Bi

= Bei , the i-th coordinate of the G-Brownian motion B, under a
given orthonormal basis (e1, . . . , ed) of Rd .

Lemma 46. Let Φ ∈ C2(Rn) be bounded with bounded derivatives and {∂2
xµxνΦ}

n
µ,ν=1 be

uniformly Lipschitz. Let s ∈ [0, T ] be fixed and let X = (X1, . . . , Xn)T be an n-dimensional
process on [s, T ] of the form

Xνt = Xνs + α
ν(t − s)+ ηνi j

(〈
Bi , B j

〉
t
−

〈
Bi , B j

〉
s

)
+ βν j (B j

t − B j
s ),

where, for ν = 1, . . . , n, i, j = 1, . . . , d, αν , ηνi j and βνi j are bounded elements of L2
G(Hs)

and Xs = (X1
s , . . . , Xn

s )
T is a given Rn-vector in L2

G(Hs). Then we have

Φ(X t )− Φ(Xs) =

∫ t

s
∂xνΦ(Xu)β

ν j dB j
u +

∫ t

s
∂xνΦ(Xu)α

νdu

+

∫ t

s

[
∂xνΦ(Xu)η

νi j
+

1
2
∂2

xµxνΦ(Xu)β
νiβν j

]
d
〈
Bi , B j

〉
u
. (25)

Here we use the Einstein convention, i.e., the above repeated indices µ, ν, i and j (but not k)
imply summation.

Proof. For each positive integer N we set δ = (t − s)/N and take the partition

πN
[s,t] = {t

N
0 , t N

1 , . . . , t N
N } = {s, s + δ, . . . , s + Nδ = t}.
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We have

Φ(X t )− Φ(Xs) =

N−1∑
k=0

[Φ(X t N
k+1
)− Φ(X t N

k
)]

=

N−1∑
k=0

[
∂xµΦ(X t N

k
)(Xµ

t N
k+1
− Xµ

t N
k
)

+
1
2
[∂2

xµxνΦ(X t N
k
)(Xµ

t N
k+1
− Xµ

t N
k
)(Xν

t N
k+1
− Xν

t N
k
)+ ηN

k ]

]
, (26)

where

ηN
k = [∂

2
xµxνΦ(X t N

k
+ θk(X t N

k+1
− X t N

k
))− ∂2

xµxνΦ(X t N
k
)](Xµ

t N
k+1
− Xµ

t N
k
)(Xν

t N
k+1
− Xν

t N
k
)

with θk ∈ [0, 1]. We have

Ê[|ηN
k |] = Ê[|[∂2

xµxνΦ(X t N
k
+ θk(X t N

k+1
− X t N

k
))− ∂2

xµxνΦ(X t N
k
)]

× (Xµ
t N
k+1
− Xµ

t N
k
)(Xν

t N
k+1
− Xν

t N
k
)|]

≤ cÊ[|X t N
k+1
− X t N

k
|
3
] ≤ C[δ3

+ δ3/2
],

where c is the Lipschitz constant of {∂2
xµxνΦ}

d
µ,ν=1. In the last step we use Example 24 and (21).

Thus
∑

k Ê[|ηN
k |] → 0. The remaining terms in the summation of the right side of (26) are

ξ N
t + ζ

N
t with

ξ N
t =

N−1∑
k=0

{
∂xµΦ(X t N

k
)

[
αµ(t N

k+1 − t N
k )+ η

µi j
(〈

Bi , B j
〉
t N
k+1

−

〈
Bi , B j

〉
t N
k

)
+βµj (B j

t N
k+1
− B j

t N
k
)

]
+

1
2
∂2

xµxνΦ(X t N
k
)βµiβν j (Bi

t N
k+1
− Bi

t N
k
)(B j

t N
k+1
− B j

t N
k
)

}
and

ζ N
t =

1
2

N−1∑
k=0

∂2
xµxνΦ(X t N

k
)

[
αµ(t N

k+1 − t N
k )+ η

µi j
(〈

Bi , B j
〉
t N
k+1

−

〈
Bi , B j

〉
t N
k

)]
×

[
αν(t N

k+1 − t N
k )+ η

νlm
(〈

Bl , Bm
〉
t N
k+1

−

〈
Bl , Bm

〉
t N
k

)]
+

[
αµ(t N

k+1 − t N
k )+ η

µi j
(〈

Bi , B j
〉
t N
k+1

−

〈
Bi , B j

〉
t N
k

)]
βνl(Bl

t N
k+1
− Bl

t N
k
).

We observe that, for each u ∈ [t N
k , t N

k+1)

Ê

∣∣∣∣∣∂xµΦ(Xu)−

N−1∑
k=0

∂xµΦ(X t N
k
)I
[t N

k ,t
N
k+1)

(u)

∣∣∣∣∣
2
 = Ê[|∂xµΦ(Xu)− ∂xµΦ(X t N

k
)|2]

≤ c2Ê[|Xu − X t N
k
|
2
] ≤ C[δ + δ2

].
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Thus
∑N−1

k=0 ∂xµΦ(X t N
k
)I
[t N

k ,t
N
k+1)

(·) tends to ∂xµΦ(X ·) in M2
G(0, T ). Similarly,

N−1∑
k=0

∂2
xµxνΦ(X t N

k
)I
[t N

k ,t
N
k+1)

(·)→ ∂2
xµxνΦ(X ·), in M2

G(0, T ).

Let N →∞; by Lemma 45 as well as the definitions of the integrations with respect to dt , dBt
and d〈B〉t , the limit of ξ N

t in L2
G(Ht ) is just the right hand side of (25). By the next remark, we

also have ζ N
t → 0 in L2

G(Ht ). We then have proved (25). �

Remark 47. In the proof of ζ N
t → 0 in L2

G(Ht ), we use the following estimates: for ψN
∈

M1,0
G (0, T ) such that ψN

t =
∑N−1

k=0 ξ
N
tk I
[t N

k ,t
N
k+1)

(t), and πN
T = {0 ≤ t0, . . . , tN = T } with

limN→∞ µ(π
N
T ) = 0 and

∑N−1
k=0 Ê[|ξ N

tk |](t
N
k+1 − t N

k ) ≤ C , for all N = 1, 2, . . . , we have

Ê[|
∑N−1

k=0 ξ
N
k (t

N
k+1 − t N

k )
2
] → 0 and, for any fixed a, ā ∈ Rd ,

Ê

[∣∣∣∣∣N−1∑
k=0

ξ N
k

(〈
Ba〉

t N
k+1
−
〈
Ba〉

t N
k

)2
∣∣∣∣∣
]
≤

N−1∑
k=0

Ê
[
|ξ N

k | · Ê
[(〈

Ba〉
t N
k+1
−
〈
Ba〉

t N
k

)2
|Ht N

k

]]
=

N−1∑
k=0

Ê[|ξ N
k |]σ

2
aaT(t

N
k+1 − t N

k )
2
→ 0,

Ê

[∣∣∣∣∣N−1∑
k=0

ξ N
k

(〈
Ba〉

t N
k+1
−
〈
Ba〉

t N
k

)
(t N

k+1 − t N
k )

∣∣∣∣∣
]

≤

N−1∑
k=0

Ê
[
|ξ N

k |(t
N
k+1 − t N

k ) · Ê
[(〈

Ba〉
t N
k+1
−
〈
Ba〉

t N
k

)
|Ht N

k

]]
=

N−1∑
k=0

Ê[|ξ N
k |]σaaT(t N

k+1 − t N
k )

2
→ 0,

as well as

Ê

[∣∣∣∣∣N−1∑
k=0

ξ N
k (t

N
k+1 − t N

k )(B
a
t N
k+1
− Ba

t N
k
)

]∣∣∣∣∣ ≤ N−1∑
k=0

Ê[|ξ N
k |](t

N
k+1 − t N

k )Ê[|B
a
t N
k+1
− Ba

t N
k
|]

=

√
2σaaT

π

N−1∑
k=0

Ê[|ξ N
k |](t

N
k+1 − t N

k )
3/2
→ 0

and

Ê

[∣∣∣∣∣N−1∑
k=0

ξ N
k

(〈
Ba〉

t N
k+1
−
〈
Ba〉

t N
k

)(
B ā

t N
k+1
− B ā

t N
k

)∣∣∣∣∣
]

≤

N−1∑
k=0

Ê[|ξ N
k |]Ê

[(〈
Ba〉

t N
k+1
−
〈
Ba〉

t N
k

)
|B ā

t N
k+1
− B ā

t N
k
|

]

≤

N−1∑
k=0

Ê[|ξ N
k |]Ê

[(〈
Ba〉

t N
k+1
−
〈
Ba〉

t N
k

)2
]1/2

Ê[|B ā
t N
k+1
− B ā

t N
k
|
2
]
1/2
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=

N−1∑
k=0

Ê[|ξ N
k |]σ

1/2
aaT σ

1/2
āāT (t

N
k+1 − t N

k )
3/2
→ 0.

We now can claim our G-Itô’s formula. Consider

Xνt = Xν0 +
∫ t

0
ανs ds +

∫ t

0
η
νi j
s d

〈
Bi , B j

〉
s
+

∫ t

0
β
ν j
s dB j

s .

Proposition 48. Let αν , βν j and ηνi j , ν = 1, . . . , n, i, j = 1, . . . , d be bounded processes of
M2

G(0, T ). Then for each t ≥ 0 and in L2
G(Ht ) we have

Φ(X t )− Φ(Xs) =

∫ t

s
∂xνΦ(Xu)β

ν j
u dB j

u +

∫ t

s
∂xνΦ(Xu)α

ν
u du

+

∫ t

s

[
∂xνΦ(Xu)η

νi j
u +

1
2
∂2

xµxνΦ(Xu)β
νi
u β

ν j
u

]
d
〈
Bi , B j

〉
u
. (27)

Proof. We first consider the case where α, η and β are step processes of the form

ηt (ω) =

N−1∑
k=0

ξk(ω)I[tk ,tk+1)(t).

From the above lemma, it is clear that (27) holds true. Now let

Xν,Nt = Xν0 +
∫ t

0
αν,Ns ds +

∫ t

0
η
νi j,N
s d

〈
Bi , B j

〉
s
+

∫ t

0
β
ν j,N
s dB j

s ,

where αN , ηN and βN are uniformly bounded step processes that converge to α, η and β in
M2

G(0, T ) as N →∞. From Lemma 46

Φ(X N
t )− Φ(X0) =

∫ t

0
∂xνΦ(X N

u )β
ν j,N
u dB j

u +

∫ t

0
∂xνΦ(X

N
u )α

ν,N
u du

+

∫ t

0

[
∂xνΦ(X N

u )η
νi j,N
u +

1
2
∂2

xµxνΦ(X
N
u )β

µi,N
u β

ν j,N
u

]
d
〈
Bi , B j

〉
u
.

(28)

We have

Ê[|X N ,µ
t − Xµt |

2
] ≤ C

∫ T

0
{Ê[(αµ,Ns − αµs )

2
] + Ê[|ηµ,Ns − ηµs |

2
] + Ê[(βµ,Ns − βµs )

2
]}ds

We then can prove that, in M2
G(0, T ),

∂xνΦ(X N
· )η

νi j,N
· → ∂xνΦ(X ·)ηνi j

·

∂2
xµxνΦ(X

N
· )β

µi,N
· βν j,N

· → ∂2
xµxνΦ(X ·)β

µi
· β

ν j
·

∂xνΦ(X
N
· )α

ν,N
· → ∂xνΦ(X ·)α

ν
·

∂xνΦ(X N
· )β

ν j,N
· → ∂xνΦ(X ·)βν j

· .

We then can pass to the limit in both sides of (28) and thus prove (27). �
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6. G-martingales, G-convexity and Jensen’s inequality

6.1. The notion of G-martingales

We now give the notion of G-martingales:

Definition 49. A process (Mt )t≥0 is called a G-martingale (resp. G-supermartingale, G-
submartingale) if for each 0 ≤ s ≤ t <∞, we have Mt ∈ L1

G(Ht ) and

Ê[Mt |Hs] = Ms, (resp. ≤ Ms, ≥ Ms).

It is clear that, for a fixed X ∈ L1
G(H), Ê[X |Ht ]t≥0 is a G-martingale. In general, how to

characterize a G-martingale or a G-supermartingale is still a very interesting problem. But the
following example gives an important characterization:

Example 50. Let M0 ∈ R, φ = (φi )di=1 ∈ M2
G(0, T ;Rd) and η = (ηi j )di, j=1 ∈ M2

G(0, T ;Sd)

be given and let

Mt = M0 +

∫ t

0
φi

udB j
s +

∫ t

0
η

i j
u d
〈
Bi , B j

〉
u
−

∫ t

0
2G(ηu)du, t ∈ [0, T ].

Then M is a G-martingale on [0, T ]. To consider this it suffices to prove the case η ∈
M2,0

G (0, T ;Sd), i.e.,

ηt =

N−1∑
k=0

ηtk I[tk .tk+1)(t).

We have, for s ∈ [tN−1, tN ],

Ê[Mt |Hs] = Ms + Ê
[
η

i j
tN−1

(〈
Bi , B j

〉
t
−

〈
Bi , B j

〉
s

)
− 2G(ηtN−1)(t − s)|Hs

]
= Ms + Ê[ηi j

tN−1
(Bi

t − Bi
s)(B

j
t − B j

s )|Hs] − 2G(ηtN−1)(t − s)

= Ms .

In the last step, we apply the relation (11). We can then repeat this procedure, step by step
backward, to prove the result for any s ∈ [0, tN−1].

Remark 51. It is worth mentioning that if M is a G-martingale,−M need not be a G-martingale.
In the above example, if η ≡ 0, then −M is still a G-martingale. This makes an essential
difference between the dB part and the d 〈B〉 part of a G-martingale.

6.2. G-convexity and Jensen’s inequality for G-expectation

A very interesting question is whether the well-known Jensen’s inequality still holds for G-
expectation. In the framework of g-expectation, this problem was investigated in [3] in which a
counterexample is given to indicate that, even for a linear function which is obviously convex,
Jensen’s inequality for g-expectation generally does not hold. Stimulated by this example, [28]
proved that Jensen’s inequality holds for any convex function under a g-expectation if and only
if the corresponding generating function g = g(t, z) is super-homogeneous in z. Here we
will discuss this problem from a quite different point of view. We will define a new notion of
convexity:
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Definition 52. A C2-function h : R 7−→ R is called G-convex if the following condition holds
for each (y, z, A) ∈ R× Rd

× Sd :

G(h′(y)A + h′′(y)zzT)− h′(y)G(A) ≥ 0, (29)

where h′ and h′′ denote the first and the second derivatives of h.

It is clear that in the special situation where G(D2u) = 1
2∆u, a G-convex function is a convex

function in the classical sense.

Lemma 53. The following two conditions are equivalent:

(i) the function h is G-convex.
(ii) The following Jensen inequality holds: for each T ≥ 0,

Ê[h(φ(BT ))] ≥ h(Ê[φ(BT )]), (30)

for each C2-function φ such that h(φ(BT )), φ(BT ) ∈ L1
G(HT ).

Proof. (i) H⇒(ii) By the definition u(t, x) := PG
t [φ](x) = Ê[φ(x + Bt )] solves the nonlinear

heat equation (1). Here we only consider the case where u is a C1,2-function. Otherwise we can
use the language of viscosity solution as we did in the proof of Lemma 7. By simple calculation,
we have

∂t h(u(t, x)) = h′(u)∂t u = h′(u(t, x))G(D2u(t, x)),

or

∂t h(u(t, x))− G(D2h(u(t, x)))− f (t, x) = 0, h(u(0, x)) = h(φ(x)),

where we define

f (t, x) = h′(u(t, x))G(D2u(t, x))− G(D2h(u(t, x))).

Since h is G-convex, it follows that f ≤ 0 and thus h(u) is a G-subsolution. It follows from the
maximum principle that h(PG

t (φ)(x)) ≤ PG
t (h(φ))(x). In particular (30) holds. Thus we have

(ii).
(ii) H⇒(i): For a fixed (y, z, A) ∈ R× Rd

×Sd , we set φ(x) := y + 〈x, z〉 + 1
2 〈Ax, x〉. By

the definition of PG
t we have ∂t (PG

t (φ)(x))|t=0 = G(D2φ)(x). By (ii) we have

h(PG
t (φ)(x)) ≤ PG

t (h(φ))(x).

Thus, for t > 0,

1
t
[h(PG

t (φ)(x))− h(φ(x))] ≤
1
t
[PG

t (h(φ))(x)− h(φ(x))].

We then let t tend to 0:

h′(φ(x))G(D2φ(x)) ≤ G(D2
xx h(φ(x))).

Since Dxφ(x) = z + Ax and D2
xxφ(x) = A. We then set x = 0 and obtain (29). �

Proposition 54. The following two conditions are equivalent:

(i) the function h is G-convex.
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(ii) The following Jensen inequality holds:

Ê[h(X)|Ht ] ≥ h(Ê[X |Ht ]), t ≥ 0, (31)

for each X ∈ L1
G(H) such that h(X) ∈ L1

G(H).

Proof. The part (ii) H⇒(i) is already provided by the above lemma. We can also apply this
lemma to prove (31) for the case X ∈ L0

i p(H) of the form X = φ(Bt1 , . . . , Btm − Btm−1) by

using the procedure of the definition of Ê[·] and Ê[·|Ht ] given in Definition 14. We then can
extend this Jensen’s inequality, under the norm ‖·‖ = Ê[| · |], to the general situation. �

Remark 55. The above notion of G-convexity can be also applied to the case where the
nonlinear heat equation (1) has a more general form:

∂u

∂t
− G(u,∇u, D2u) = 0, u(0, x) = ψ(x) (32)

(see Examples 4.3, 4.4 and 4.5 in [40]). In this case a C2-function h : R 7−→ R is said to be
G-convex if the following condition holds for each (y, z, A) ∈ R× Rd

× Sd :

G(y, h′(y)z, h′(y)A + h′′(y)zzT)− h′(y)G(y, z, A) ≥ 0.

We don’t need the subadditivity and/or positive homogeneity of G(y, z, A). A particularly
interesting situation is the case of g-expectation for a given generating function g = g(y, z),
(y, z) ∈ R× Rd ; in this case we have the following g-convexity:

1
2

h′′(y)|z |2+g(h(y), h′(y)z)− h′(y)g(y, z) ≥ 0. (33)

We will discuss such g-convex functions in [25].

Example 56. Let h be a G-convex function and let X ∈ L1
G(H) be such that h(X) ∈ L1

G(H);
then Yt = h(Ê[X |Ht ]), t ≥ 0, is a G-submartingale: for each s ≤ t ,

Ê[Yt |Hs] = Ê[h(Ê[X |Ft ])|Fs] ≥ h(Ê[X |Fs]) = Ys .

7. Stochastic differential equations

We consider the following SDE driven by G-Brownian motion:

X t = X0 +

∫ t

0
b(Xs)ds +

∫ t

0
hi j (Xs)d

〈
Bi , B j

〉
s
+

∫ t

0
σ j (Xs)dB j

s , t ∈ [0, T ], (34)

where the initial condition X0 ∈ Rn is given and

b, hi j , σ j : Rn
7→ Rn

are given Lipschitz functions, i.e., |φ(x)−φ(x ′)| ≤ K |x−x ′|, for each x , x ′ ∈ Rn , φ = b, ηi j and
σ j . Here the horizon [0, T ] can be arbitrarily large. The solution is a process X ∈ M2

G(0, T ;Rn)

satisfying the above SDE. We first introduce the following mapping on a fixed interval [0, T ]:

Λ·(Y ) :=: Y ∈ M2
G(0, T ;Rn) 7−→ M2

G(0, T ;Rn)
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by setting Λt = X t , t ∈ [0, T ], with

Λt (Y ) = X0 + X0 +

∫ t

0
b(Ys)ds +

∫ t

0
hi j (Ys)d

〈
Bi , B j

〉
s
+

∫ t

0
σ j (Ys)dB j

s .

We immediately have

Lemma 57. For each Y, Y ′ ∈ M2
G(0, T ;Rn), we have the following estimate:

Ê[|Λt (Y )− Λt (Y
′)|2] ≤ C

∫ t

0
Ê[|Ys − Y ′s |

2
]ds, t ∈ [0, T ],

where the constant C depends only on K , Γ and the dimension n.

Proof. This is a direct consequence of the inequalities (14), (16) and (23). �

We now prove that SDE (34) has a unique solution. By multiplying e−2Ct on both sides of the
above inequality and then integrating them on [0, T ]. It follows that∫ T

0
Ê[|Λt (Y )− Λt (Y

′)|2]e−2Ct dt ≤ C
∫ T

0
e−2Ct

∫ t

0
Ê[|Ys − Y ′s |

2
]dsdt

= C
∫ T

0

∫ T

s
e−2Ct dtÊ[|Ys − Y ′s |

2
]ds

= (2C)−1C
∫ T

0
(e−2Cs

− e−2CT )Ê[|Ys − Y ′s |
2
]ds.

We then have∫ T

0
Ê[|Λt (Y )− Λt (Y

′)|2]e−2Ct dt ≤
1
2

∫ T

0
Ê[|Yt − Y ′t |

2
]e−2Ct dt.

We observe that the following two norms are equivalent in M2
G(0, T ;Rn):∫ T

0
Ê[|Yt |

2
]dt ∼

∫ T

0
Ê[|Yt |

2
]e−2Ct dt.

From this estimate we can obtain that Λ(Y ) is a contracting mapping. Consequently, we have

Theorem 58. There exists a unique solution of X ∈ M2
G(0, T ;Rn) of the stochastic differential

equation (34).
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Appendix. Some inequalities in L p
G(H)

For r > 0, 1 < p, q <∞, such that 1
p +

1
q = 1, we have

|a + b|r ≤ max{1, 2r−1
}(|a|r + |b|r ), ∀a, b ∈ R (35)
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|ab| ≤
|a|p

p
+
|b|q

q
. (36)

Proposition 59.

Ê[|X + Y |r ] ≤ Cr (Ê[|X |r ] + Ê[|Y |r ]), (37)

Ê[|XY |] ≤ Ê[|X |p]1/p
· Ê[|Y |q ]1/q , (38)

Ê[|X + Y |p]1/p
≤ Ê[|X |p]1/p

+ Ê[|Y |p]1/p. (39)

In particular, for 1 ≤ p < p′, we have Ê[|X |p]1/p
≤ Ê[|X |p′ ]1/p′ .

Proof. (37) follows from (35). We set

ξ =
X

Ê[|X |p]1/p
, η =

Y

Ê[|Y |q ]1/q
.

By (36) we have

Ê [|ξη|] ≤ Ê
[
|ξ |p

p
+
|η |q

q

]
≤ Ê

[
|ξ |p

p

]
+ Ê

[
|η|q

q

]
=

1
p
+

1
q
= 1.

Thus (38) follows.

Ê[|X + Y |p] = Ê[|X + Y | · |X + Y |p−1
]

≤ Ê[|X | · |X + Y |p−1
] + Ê[|Y | · |X + Y |p−1

]

≤ Ê[|X |p]1/p
· Ê[|X + Y |(p−1)q

]
1/q

+ Ê[|Y |p]1/p
· Ê[|X + Y |(p−1)q

]
1/q .

We observe that (p − 1)q = p. Thus we have (39). �
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