期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:127
Intrinsic expansions for averaged diffusion processes
Article
Pagliarani, S.1  Pascucci, A.2  Pignotti, M.2 
[1] Univ Trieste, DEAMS, Trieste, Italy
[2] Univ Bologna, Dipartimento Matemat, Bologna, Italy
关键词: Averaged diffusion;    Hypoelliptic Kolmogorov operators;    Asymptotic expansion;    Asian option;   
DOI  :  10.1016/j.spa.2016.12.002
来源: Elsevier
PDF
【 摘 要 】

We show that the convergence rate of asymptotic expansions for solutions of SDEs is higher in the case of degenerate diffusion compared to the elliptic case, i.e. it is higher when the Brownian motion directly acts only along some directions. In the scalar case, this phenomenon was already observed in Gobet and Miri 2014 using Malliavin calculus techniques. Here, we provide a general and detailed analysis by employing the recent study of intrinsic functional spaces related to hypoelliptic Kolmogorov operators in Pagliarani et al. 2016. Applications to finance are discussed, in the study of path-dependent derivatives (e.g. Asian options) and in models incorporating dependence on past information. (C) 2016 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2016_12_002.pdf 519KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次