期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:122
Convergence rates to the Marchenko-Pastur type distribution
Article
Bai, Zhidong1,2,3  Hu, Jiang1,2  Zhou, Wang3 
[1] NE Normal Univ, KLASMOE, Changchun 130024, Peoples R China
[2] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[3] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
关键词: Convergence rate;    Sample covariance matrix;    Spectral distribution;   
DOI  :  10.1016/j.spa.2011.10.002
来源: Elsevier
PDF
【 摘 要 】

S-n = 1/n (TnXnX)-X-1/2*T-n(n)1/2, where X-n = (x(ij)) is a p x n matrix consisting of independent complex entries with mean zero and variance one, T-n is a p x p nonrandom positive definite Hermitian matrix with spectral norm uniformly bounded in p. In this paper, if sup(n) sup(i,j) E vertical bar x(ij)(8) vertical bar < infinity and y(n) = p/n < 1 uniformly as n -> infinity, we obtain that the rate of the expected empirical spectral distribution of S-n converging to its limit spectral distribution is O(n(-1/2)). Moreover, under the same assumption, we prove that for any eta > 0, the rates of the convergence of the empirical spectral distribution of S-n in probability and the almost sure convergence are O(n(-2/5)) and O(n(-2/5+eta)) respectively. (C) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2011_10_002.pdf 296KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次