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Abstract

Sn =
1
n T1/2

n XnX∗
nT1/2

n , where Xn = (xi j ) is a p × n matrix consisting of independent complex entries
with mean zero and variance one, Tn is a p × p nonrandom positive definite Hermitian matrix with spectral
norm uniformly bounded in p. In this paper, if supn supi, j E | x8

i j |< ∞ and yn = p/n < 1 uniformly
as n → ∞, we obtain that the rate of the expected empirical spectral distribution of Sn converging to its
limit spectral distribution is O(n−1/2). Moreover, under the same assumption, we prove that for any η > 0,
the rates of the convergence of the empirical spectral distribution of Sn in probability and the almost sure
convergence are O(n−2/5) and O(n−2/5+η) respectively.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction and results

Let Xn = (xi j )p×n , where x ′

i j s are independent random complex variables with Exi j = 0 and

E|xi j |
2

= 1, and let Tn be a p× p non-random positive definite Hermitian matrix whose spectral
norm is bounded by a constant independent of p. In this paper, we consider a class of sample
covariance matrices,

Sn =
1
n

T1/2
n XnX∗

nT1/2
n ,
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where T1/2
n is any square root of Tn and X∗

n denotes the conjugate transpose of the matrix Xn .
Here Sn can be viewed as the sample covariance matrix based on n samples from a p dimensional
population, whose population matrix is Tn (see [24,7,9,4]). Moreover, if Tn is taken as the
inverse of another sample covariance matrix which is independent of Xn , then Sn is an F-matrix
(see [23,4]).

In recent years, since high dimensional data occur in many modern scientific fields, the
random matrix theory (RMT) in both theoretical investigations and applications becomes more
and more important. For example, RMT was widely applied in the context of vector signal
processing. Another typical application is in finance. Details can be found in [10,21,5,14,22,13].

We start with some basic facts about RMT. For any n ×n matrix A with only real eigenvalues,
let FA denote the empirical spectral distribution function (ESDF) of A, that is

FA(x) =
1
n

n−
i=1

I (λA
i ≤ x),

where λA
i denotes the i-th smallest eigenvalue of A. The results in [27,24] state that FSn

converges almost surely (a.s.) to a non-random distribution F y,H under the assumption that,

as n → ∞, the ratio yn = p/n → y < ∞ and Hn := FTn
D
→ H , a proper distribution.

The notation F y,H means that the limiting spectral distribution function (LSDF) of the sequence
{Sn}, which is also known as Marchenko–Pastur (M–P) type distribution, depends on the limiting
dimension to sample size ratio y and LSDF H of the population matrix. It is shown in [7] that
the Stieltjes transform s(z) of F y,H is a solution to the equation

s =

∫
1

t (1 − y − yzs − z)
d H(t), (1.1)

which is unique in the set {s ∈ C : −(1 − y)/z + ys ∈ C+
}. Here for any function of bounded

variation G on the real line, its Stieltjes transform is defined by

sG(z) =

∫
1

λ− z
dG(λ), z ∈ C+

≡ {z ∈ C+
: ℑz > 0}.

Silverstein and Choi in [26] derive some analytic properties of F y,H , such as the continuous
dependence of F y,H on y and H , and the fact that the limit of s(z) as z ↓ c ∈ R \ 0 exists and is
continuous. Later Bai and Silverstein in [9] establish the central limit theorem for linear spectral
statistics of Sn . Recently, Jing et al. in [20] give another way of understanding the LSDF F y,H ,
i.e., using kernel estimators to estimate F y,H .

Clearly, in order to refine the above approximation, we need to obtain the convergence rate.
In this paper, we focus on establishing the convergence rates of the ESDF of Sn . In other words,
we will study the rate of the following Kolmogorov distances tending to zero,

∆n := sup
x

|EFSn (x)− F yn ,Hn (x)| and ∆̃n := sup
x

|FSn (x)− F yn ,Hn (x)|

where F yn ,Hn is the distribution function obtained from F y,H by replacing y and H with yn and
Hn respectively.

The rates of convergence play important roles in the applications of the spectral analysis
of large random matrices which can be viewed in [12,20,11]. If Tn = I, the p × p identity
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matrix, given the condition that y = limn→∞ yn stays away from 0 and 1, Bai [2] proves that the
convergence rate of ∆n to zero is O(n−1/4) under the assumption that supn supi, j Ex4

i j I (|xi j | ≥

M) → 0 as M → ∞. Ten years later, Bai et al. [6] and Götze and Tikhomirov [18] improve the
rate to O(n−1/2) at the cost of the eighth moments of the matrix entries. If y is close to 1, since
the limit density function and its Stieltjes transform have singularities, the research of the rates
of convergence becomes more difficult. In this case, Bai [2] proves that the order is O(n−5/48).
In [6], it is improved to O(n−1/8). In [19], Götze and Tikhomirov obtain the bound O(n−1/2)

under the assumption supi, j Ex4
i j < ∞ and 0 < θ ≤ yn ≤ 1. When Tn is not the identity

matrix, Jing et al. in [20] prove that ∆n = O(n−2/5), assuming that x ′

i j s are independent and

identically distributed, Ex16
11 < ∞, and yn → y ∈ (0, 1); and they apply this result to estimate

the spectral density functions of sample covariance matrices. However, the exact rates and the
optimal conditions of the convergence are still open. Jing et al. in [20] conjecture that the rate of
∆̃n could be O(n−1


log n) in probability (i.p.) under the fourth moment condition. Our main

results of this paper are as follows.

Theorem 1.1. Assume that 0 < θ ≤ yn ≤ Θ < 1 for positive constants θ and Θ,

supn supi, j E|x8
i j | < ∞, limn→∞ λ

Tn
1 = λ0 > 0, supn λ

Tn
p < ∞ and FTn

D
→ H, a proper

distribution function. Then we have

∆n = O(n−1/2). (1.2)

Remark 1.2. The condition supn λ
Tn
p < ∞ is equivalent to supn λ

Tn
p ≤ 1. One can see this via

re-scaling Tn by (supn λ
Tn
p )

−1. From now on, we will assume that supn λ
Tn
p ≤ 1.

Theorem 1.3. Under the same assumptions of Theorem 1.1, we have

∆̃n = O(n−2/5) i.p., (1.3)

and for any η > 0,

∆̃n = O(n−2/5+η) a.s. (1.4)

Remark 1.4. It is worth noting that, as in [2], it is impossible to establish any rate of

supx |EFSn (x)− F y,H (x)| because we know nothing about the rates of yn → y and FTn
D
→ H .

This is why we choose F yn ,Hn instead of F y,H in these theorems.

Remark 1.5. The condition supn supi, j E|x8
i j | < ∞ is just a technical assumption. This

assumption is essentially required when we apply Lemma 6.5 and the truncation Lemma 3.1.
However we believe that the fourth moment is sufficient.

The rest of this paper is organized as follows. The main tools of proving the theorems and
some basic consequences are introduced in Section 2. In Section 3, we take the truncation and
centralization step. Theorem 1.1 is proved in Section 3 and the proof of Theorem 1.3 is provided
in Section 4. Some technical lemmas are given in Section 5. Throughout this paper, constants
appearing in inequalities are represented by C which are nonrandom and may take different
values from one appearance to another.
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2. The main tools and easy consequences

Our main tools to prove the theorems are two Berry–Esseen type inequalities which are proved
by Götze and Tikhomirov in [17] and by Bai in [1].

Proposition 2.1 (Lemma 2.1 in [19]). Let F and G be distribution functions satisfying


|F(x)−
G(x)|dx < ∞. Denote their Stieltjes transforms by sF (z) and sG(z) respectively, where z ∈ C+.
Assume that the distribution G has a support contained in the bounded interval [a, b] and admits
a density g such that g(x) ≤ cg for some positive constant cg > 0. Then there exists some
constant C > 0 depending only on cg such that, for any 0 < v < V ,

sup
x

|F(x)− G(x)| ≤ C

∫
∞

−∞

|sF (u + iV )− sG(u + iV )|du

+ v + sup
u∈[a,b]

ℜ∫ V

v

(sF (u + i x)− sG(u + i x))dx



. (2.1)

Proposition 2.2 (Theorem 2.2 in [1]). Let F be a distribution function and let G be a function
of bounded variation satisfying


|F(x) − G(x)|dx < ∞. Denote their Stieltjes transforms by

sF (z) and sG(z) respectively, where z = u + iv ∈ C+. Then

sup
x

|F(x)− G(x)| ≤
1

π(1 − ζ )(2ρ − 1)

∫ A

−A
|sF (z)− sG(z)|du

+ 2πv−1
∫

|x |>B
|F(x)− G(x)|dx + v−1 sup

x

∫
|u|≤2vc∗

|G(x + u)− G(x)|du


(2.2)

where the constants A > B > 0, ζ and c∗ are restricted by ρ =
1
π


|u|≤c∗

1
u2+1

du > 1
2 , and

ζ =
4B

π(A−B)(2ρ−1) ∈ (0, 1).

We use Proposition 2.1 to prove Theorem 1.1 and use Proposition 2.2 to prove Theorem 1.3.
Moreover, the bound of the density function of F y,H is required when we apply the two
propositions. For example, in Proposition 2.1, we require the density function of F y,H to be
bounded by some constant. It is also useful when we estimate the third integral in (2.2). So here
we present a lemma on it.

Lemma 2.3. Let s(z) be the Stieltjes transform of the LSDF of matrices Sn , where z = u + iv ∈

C+. If u ∈ [a, b] with a > 0, then there exists a positive constant C such that for all v > 0, we
have

sup
u∈[a,b]

|s(z)| ≤ C and f y,H (x) ≤
1

π
√
λ0xy

,

where f y,H (x) is the density function of F y,H (x).

Before proving this lemma, we give some notation and facts which will be well used in the
following parts. Let I be the identity matrix. Define D = D(z) = Sn − zI, r j = n−1/2T1/2

n X(· j)
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where X(· j) is the j-th column of Xn and D j = D j (z) = D(z)− r j r∗

j . Moreover introduce

a j = r∗

j D
−1
j TnD−1

j r j , α j = a j − n−1Etr(D−1
j TnD−1

j Tn),

γ j = r∗

j D
−1
j r j − n−1Etr(D−1

j Tn), γ̂ j = r∗

j D
−1
j r j − n−1tr(D−1

j Tn),

β j = (1 + r∗

j D
−1
j r j )

−1, b j = (1 + n−1Etr(D−1
j Tn))

−1,

sn = sn(z) = sFSn (z), s = s(z) = sF y,H (z), s0 = s0(z) = sF yn ,Hn (z).

(2.3)

Let Sn =
1
n X∗

nTnXn, sn = sn(z) = sFSn (z), F y,H
= limn→∞ FSn , s = s(z) = sF y,H (z) and

s0 = s0(z) = sF yn ,Hn (z). Since the spectra of Sn and Sn differ by |n − p| zero eigenvalues, it
follows that

FSn = (1 − yn)I ([0,∞))+ yn FSn ,

which implies

F y,H
= (1 − y)I ([0,∞))+ yF y,H ,

zsn(z) = yn − 1 + zynsn(z), (2.4)

and

zs(z) = y − 1 + zys(z). (2.5)

Substituting (2.5) into (1.1), we obtain

s(z) = −
1
z

∫
1

1 + ts
d H(t). (2.6)

Moreover s(z) has an inverse

z(s) = −
1
s

+ y
∫

t

1 + ts
d H(t). (2.7)

Note that if Tn is the identity matrix, there is an explicit solution to (1.1). Thus, in this case
we can get the explicit expression of the destiny function f y,H by the inversion formula of the
Stieltjes transform (Lemma 6.8). Then analysing the asymptomatics of the ESDF FSn becomes
much simpler. But for general Tn , there is no explicit solution to (1.1), so we know nothing about
F y,H except the Eq. (1.1). Thus what we can do is to investigate the properties of Eq. (1.1), or
equivalently the Eqs. (2.6) and (2.7). This makes the problems more complicated.

Proof of Lemma 2.3. First, from taking the imaginary part of (2.7), we have for all z ∈ C+,

y
∫

t2

|1 + ts(z)|2
d H(t) =

1

|s(z)|2
−

v

ℑs(z)
≥ 0. (2.8)

Also, (2.5) and (2.6) imply that

zs(z)− y + 1 = zys(z) = −y
∫

1
1 + ts(z)

d H(t).
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It follows from Hölder’s inequality and (2.8) that

|zys(z)| ≤
√

y


y
∫

t2

|1 + ts(z)|2
d H(t)

∫
t−2d H(t)

1/2

≤

√
y

|s(z)λ0|
,

which implies

|s(z)s(z)| ≤
1

λ0
√

y|z|
.

This leads to, for all u ∈ [a, b],

sup
u∈[a,b]

|s(z)| ≤ C and sup
u∈[a,b]

|s(z)| ≤ C.

Let Ψ be the support of F y,H (x). For any u ∈ Ψ \ ∂Ψ , via Lemma 6.8, we have f y,H (u) =

π−1
ℑs(u). Then taking the real part of (2.7),

u = −
ℜs(u)

|s(u)|2
+ y

∫
t (1 + tℜs(u))d H(t)

|1 + ts(u)|2
.

Using (2.8) with v ↓ 0, we obtain

u = y
∫

td H(t)

(1 + tℜs(u))2 + t2ℑs(u)2
≤ y

∫
d H(t)

tℑs(u)2
.

Therefore,

ℑs(u) ≤


∞

0 yt−1d H(t)

x

1/2

.

If u ∈ Ψ c
∪ ∂Ψ , we have ℑs(u) = 0. Therefore, by the fact that s(z) = −

1−y
z + ys(z), the proof

is complete. �

3. Truncation, centralization and rescale

We first truncate the random variables xi j at n3/16 and then centralize and rescale the variables.
In the following sections, we denote ‖A‖ as the spectral norm of any matrix A, i.e. the square
root of the maximum eigenvalue of A∗A. Let us define

x̂i j = xi j I (|xi j | ≤ n3/16) x̃i j = x̂i j − Ex̂i j x̌i j = x̃i j/(E|x̂i j − Ex̂i j |
2)1/2

X̂n = (x̂i j )p×n X̃n = (x̃i j )p×n X̌n = (x̌i j )p×n

Ŝn =
1
n

T
1
2
n X̂nX̂∗

nT
1
2
n S̃n =

1
n

T
1
2
n X̃nX̃∗

nT
1
2
n Šn =

1
n

T
1
2
n X̌nX̌∗

nT
1
2
n .

In this section, we will show that under the assumptions in Theorem 1.1, we have almost surely

sup
x

|FSn (x)− F yn ,Hn (x)| ≤ C max


sup
x

|F Šn (x)− F yn ,Hn (x)|, n−1/2

. (3.1)

This means that we can add the condition |xi j | ≤ n3/16 for all i, j in Theorems 1.1 and 1.3.
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From [8], we know that the support of F y,H (x) is a subset of [λ0(1−
√

y)2, (1+
√

y)2]. Thus
applying Lemma 2.3, we get

sup
x

|F yn ,Hn (x + h)− F yn ,Hn (x)| = sup
x

∫ x+h

x
f yn ,Hn (t)dt


≤ sup

x

h

2π

λ

Tn
1 yn

√
x + h +

√
x


≤

√
h

ynλ
Tn
1

.

This shows that F yn ,Hn satisfies the condition in Lemma 6.3. Thus to prove (3.1), one has to
prove the following lemma.

Lemma 3.1. Under the same assumptions of Theorem 1.1, we have

I: supx |FSn (x)− F Ŝn (x)| = O(n−1/2) a.s.

II: L(F Ŝn − F Šn ) = o(n−1/2) a.s.

where L(·, ·) denotes the Lévy distance.

Proof. (I) By Lemma 6.1, we have

sup
x

|FSn (x)− F Ŝn (x)| ≤
1
p

rank


1
√

n
T1/2

n (Xn − X̂n)


≤

1
p

−
i j

I (|xi j | > n3/16).

Under the assumption of Theorem 1.1, we have

E


1
p

−
i j

I (|xi j | > n3/16)


≤

pn max
i j

E|xi j |
8

pn3/2 = O(n−1/2),

and

Var


1
p

−
i j

I (|xi j | > n3/16)


= O(n−3/2).

For any ε > n1/2 p−1∑
i j P(|xi j | > n3/16) and by the Bernstein inequality, we have

P


1
p

−
i j

I (|xi j | > n3/16) > n−1/2ε


≤ 2e−Cn1/2

,

which is summable. Therefore from the Borel–Cantelli lemma, we get (I).

(II) Let Mn =


1 − σ−1

i j


p×n

, with σ 2
i j = Var(x̂i j ) and ◦ be the Hadamard product of

matrices. Now let us estimate the Lévy distance. By Lemma 6.2, we obtain that

L(F Ŝn , F S̃n ) ≤ 2

 1
√

n
T1/2

n X̂n

  1
√

n
T1/2

n E(X̂n)

+

 1
√

n
T1/2

n E(X̂n)

2

L(F Šn , F S̃n ) ≤ 2

 1
√

n
T1/2

n X̃n

  1
√

n
T1/2

n (X̃n ◦ Mn)

+

 1
√

n
T1/2

n (X̃n ◦ Mn)

2

.
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From Theorem 1.1 in [8] and the condition ‖Tn‖ ≤ 1, we have

lim sup

 1
√

n
T1/2

n X̂
 = lim sup

 1
√

n
T1/2

n X̃n

 ≤ 1 +
√

y a.s.

In addition, by the assumption that Exi j = 0 and supn supi, j E|x8
i j | < ∞, we have 1

√
n

T1/2
n EX̂n

 ≤
√

n max
i, j

E|xi, j |I (|xi j | > n3/16) = O(n−13/16),

and

|σi j − 1| ≤ |σ 2
i j − 1|

≤ E

|xi j |

2 I (|xi j | > n3/16)


+


Exi j I (|xi j | ≤ n3/16)

2

= O(n−9/8).

Thus, we have 1
√

n
T1/2

n (X̃n ◦ Mn)

2

≤
1
n

−
i, j

|x̃i j |
2(1 − σ−1

i j )
2

≤
1
n

−
i, j

|x̃i j |
2 max

i, j


1 − σi j

σi j

2

= o(n−1) a.s.

From the above arguments, we can complete the proof. �

Remark 3.2. In proofs of theorems, we may assume that the entries of Xn are truncated at n3/16,
recentralized and rescaled. For brevity, we still use xi j to denote the truncated and normalized
variables x̌i j in the sequel.

4. Proof of Theorem 1.1

In [20], which is the first paper investigating the convergence rates of spectral distributions of
Sn with Tn not being the identity matrix, Jing et al. prove that ∆ = O(n−2/5). However, this
order cannot be improved by the mathematical technique used in [20]. Therefore, in this section,
we introduce another technique. The main tools used in the proof are properties of the Stieltjes
transform and bounds on the moments of martingale difference sequences. Before proceeding,
we introduce some notation.

Throughout this section, we use a and b to denote two constants such that 0 < a <

λ0(1 −
√

yn)
2, b > (1 +

√
yn)

2. Let z = u + iv, u ∈ [a, b], 1 ≥ v ≥ v0 = max{ϑ∆,C0n−1/2
}

with 0 < ϑ < 1 and C0 be an appropriate constant. Both ϑ and C0 will be specified later.
From Proposition 2.1, we know that the essential portion of the proof of Theorem 1.1 is to

obtain the upper bound for |Esn −s0|. The derivation of such a bound is one of the main technical
works of this paper. In order to make the presentation easily followed, we start with some basic
facts.

From the definition of the Stieltjes transform we have

sn(z) =
1
p

p−
j=1

1

λ
Sn
j − z

=
1
p

tr(Sn − zI)−1.
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Write

Sn − zI + zI =

n−
i= j

r j r∗

j .

Multiplying the inverse of Sn − zI on both sides (refer to the notation in (2.3)), we have

I + zD−1
=

n−
i= j

β j r j r∗

j D
−1
j . (4.1)

Taking the trace on both sides and dividing by n, we get

yn + zynsn =
1
n

n−
j=1

(1 − β j ),

which together with (2.4) implies

sn = −
1
zn

n−
j=1

β j . (4.2)

If we can prove that Eβ j = g(z,Esn(z))+o(1) for some function g, then (4.2) gives (intuitively)

zEsn = −g(z,Esn(z))+ o(1).

So the LSDF f y,H exists and its Stieltjes transform is the solution to the equation

zs = −g(z, s).

This is the classical method to deal with the problems about LSDF of random matrices. Now we
show how to find the function g rigorously in our case.

Let ωn = ωn(z) =
1
p tr(−zEsnTn − zI)−1

− Esn . Later we will show that ωn tends to 0 fast
enough for our purpose. Using (2.4), we can check

ωn = −
1
yn


yn

z

∫
d Hn(t)

tEsn + 1
+ Esn +

1 − yn

z


= −

Esn

zyn


yn

Esn

∫
d Hn(t)

tEsn + 1
+ z +

1 − yn

Esn


=

Esn

zyn


−z −

1
Esn

+ yn

∫
td Hn(t)

tEsn + 1


. (4.3)

Denote Rn = −z −
1
Esn

+ yn
 td Hn(t)

tEsn+1 . Then we have Rn = zynωn/Esn and

Esn =
1

−z + yn
 td Hn(t)

tEsn+1 − Rn
.

Combining (2.5) and (2.6), we obtain

s0 =
1

−z + yn
 td Hn(t)

ts0+1

.
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Thus we get

Esn − s0 =

(Esn − s0)yn
 t2d Hn(t)
(ts0+1)(tEsn+1)

−z + yn
 td Hn(t)

tEsn+1 − Rn

 
−z + yn

 td Hn(t)
ts0+1

 + sns0 Rn,

which implies

Esn − s0 = s0 ynzωn

1 −

yn
 t2d Hn(t)
(1+tEsn)(1+ts0)

−z + yn
 td Hn(t)
(1+tEsn)

− Rn

 
−z + yn

 td Hn(t)
1+ts0


−1

. (4.4)

Next, we will bound the right side of (4.4). Noting (2.4) and (2.5), we are actually working on
|Esn − s0|. Here we need the following lemma which will be proved in Section 4.3.

Lemma 4.1. Under the same assumptions of Theorem 1.1, we have for any u ∈ [a, b] and
v ≥ C0n−1/2,

|ωn| = O(n−1v−1).

From integration by parts, we have

|Esn(z)− s0(z)| =


∫

∞

0

d(EFSn (x)− F yn ,Hn (x))

x − z


=


∫

∞

0

EFSn (x)− F yn ,Hn (x)

(x − z)2
dx

 ≤
π∆
v

≤
π

ϑ
.

By Lemma 2.3, we have

sup
u∈[a,b]

|s0(z)| ≤ C and sup
u∈[a,b]

|s0(z)| ≤ C.

Then together with (2.4), if u ≥ a, we have

|Esn(z)| ≤ C, |Esn(z)| ≤ C. (4.5)

In view of (2.4) and (4.3), we have

−zynωn = yn

∫
1

tEsn(z)+ 1
d Hn(t)+ zEsn(z)− yn + 1,

which via Lemma 4.1 implies that

inf
n,z

|Esn| > C > 0.

Thus we have for v > C0n−1/2 with appropriate C0,

|Rn| = |ynzωn(Esn(z))
−1

| ≤
C

nv
< v. (4.6)
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Then by |Rn| ≤ v and the Cauchy–Schwarz inequality, we get
yn
 t2d Hn(t)
(1+tEsn)(1+ts0)

−z + yn
 td Hn(t)
(1+tEsn)

− Rn

 
−z + yn

 td Hn(t)
1+ts0




≤

 yn
 t2d Hn(t)

|1+tEsn |2−z + yn
 td Hn(t)
(1+tEsn)

− Rn

2


1/2 yn
 t2d Hn(t)

|1+ts0|
2−z + yn

 td Hn(t)
1+ts0

2


1/2

=

 ynℑEsn

 t2d Hn(t)
|1+tEsn |2

v + ℑRn + ℑEsn yn
 t2d Hn(t)

|1+tEsn |2

1/2 ynℑs0

 t2d Hn(t)
|1+ts0|

2

v + ℑs0 y
 t2d H(t)

|1+ts0|
2

1/2

≤

 ynℑs0

 t2d Hn(t)
|1+ts0|

2

v + ℑs0 y
 t2d H(t)

|1+ts0|
2

1/2

. (4.7)

Applying
√

1 − a ≤ 1 −
1
2 a for a ≤ 1, we have

 ℑs0 yn
 t2d H(t)

|1+ts0|
2

v + ℑs0 yn
 t2d H(t)

|1+ts0|
2


1
2

≤ 1 −
1
2

v

v + ℑs0 yn
 t2d H(t)

|1+ts0|
2

, (4.8)

which together with Lemma 2.3 and (4.4) implies

|Esn − s0| ≤
C

nv2

ℑs0 yn

∫
t2d H(t)

|1 + ts0|
2

 .
Noting that (2.8) also holds when s is replaced by s0, we obtain that

ynℑs0

∫
t2d H(t)

|1 + ts0|
2 =

ℑs0

|s0|
2 − v < C. (4.9)

It follows from (2.4) and (2.5) that,

|Esn − s0| =
1
yn

|Esn − s0| ≤
C

nv2 , (4.10)

which implies that the second integral in (2.1) has the order O(n−1v−1).

Moreover, for any constant V , if v = V , then from (4.37) and (4.6), we know that

|ωn| = O


1
n


and |Rn| = O


1
n


.

Therefore, it follows that

|Esn − s0| ≤
C

n
|Esns0| =

C

n
E|s2

n| +
C

n
|Esn||Esn − s0|.
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This implies, for large n,

|Esn − s0| =
1
yn

|Esn − s0| ≤
C

nyn
|Es2

n|.

A direct calculation shows that∫
∞

−∞

|Esn(u + iV )− s0(u + iV )|du

≤
C

n
E
∫

∞

−∞

∫
∞

−∞

1

(x − u)2 + V 2 dudEFSn (x) = O


1
n


. (4.11)

Therefore, we conclude from Proposition 2.1, (4.10) and (4.11) that for 0 < θ ≤ yn ≤

Θ < 1, u ∈ [a, b], 1 ≥ v ≥ v0 = max{ϑ∆,C0n−1/2
},

∆ ≤ C1v +
C2

nv
+

C3

n
. (4.12)

Here we note that neither C1 nor C3 depends on ϑ . If v0 = C0n−1/2, then we have ∆ ≤

ϑ−1C0n−1/2. If v ≥ v0 = ϑ∆, then choose ϑ = (2C1)
−1, from (4.12), we also have

∆ = O(n−1/2).

Therefore, it remains to prove Lemma 4.1.
The rest of this section is organized as follows. In Sections 4.1 and 4.2, we will introduce

two important conclusions, Lemma 4.2 and (4.32), which will be used in the rest of the paper.
The proof of Lemma 4.1 will be provided in Section 4.3, which is an improvement over the same
part in [20]. Since the conditions in Theorem 1.1 are much weaker than those in [20], we have to
make sure that many conclusions in [20] are also correct under our situations.

4.1. A bound for E|Esn − sn|
2l

In this section, we will use the martingale decomposition method to get a bound for
E |sn − Esn|

2l . This method, devised by Girko in [15,16], is widely used in random matrix theory.

Lemma 4.2. If |bi | ≤ C, supn supi, j E|xi j |
8 < ∞, u ∈ [a, b] and v ≥ C0n−1/2, then there exist

positive constants Cl depending on l, such that for all n and any l ≥ 1.

E
1n trTnD−1

− E
1
n

trTnD−1
2l

≤
Cl

n2lv3l
. (4.13)

Proof. Let E0(·) denote the expectation and Ek(·) denote the conditional expectation with respect
to the σ -field generated by r1, . . . , rk . We have

E
1
n

trTnD−1
−

1
n

trTnD−1
= −

1
p

n−
k=1

(Ek trTnD−1
− Ek−1trTnD−1)

=
1
p

n−
k=1

(Ek − Ek−1)


r∗

kD−1
k TnD−1

k rk

1 + r∗

kD−1
k rk



=
1
p

n−
k=1

(Ek − Ek−1) (αkbk − akβkbkγk) .
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Note that {(Ek − Ek−1)αkbk} and {(Ek − Ek−1)akβkbkγk} form two sequences of bounded
martingale differences respectively. Applying Lemma 6.9, it follows that for l ≥ 1,

E

 1
p

n−
k=1

(Ek − Ek−1) bkαk


2l

≤ Cl p−2l

E


n−

k=1

Ek−1|bkαk |
2

l

+

n−
k=1

E|bkαk |
2l

 .
It follows from Lemma 6.7 that

|β j a j | = |trTnD−1
− trTnD−1

j | ≤ v−1. (4.14)

From (4.14), one can check directly that

trTnD−1
k (TnD−1

k )∗ =
1
v
ℑ


trT2

n(Dk − D)+ trT2
nD


≤
1
v


1
v

+ ℑtrTnD

. (4.15)

It follows from Lemma 6.5 that

Ek−1|bkαk |
2

≤ Ek−1
C

n2 tr(TnD−1
k )2(TnD−1

k )2∗

≤ Ek−1
C

n2v2 trTnD−1
k (TnD−1

k )∗ ≤ Ek−1
C

n2v3


1
v

+ ℑtrTnD

.

Furthermore, by Lemma 6.5 and the fact that

ν2l = sup
n

sup
i, j

E|xi j |
2l

=


O(1), l ≤ 4,
O(n3l/8−3/2), l > 4,

for l ≥ 1, we have

E|αk |
2l

≤
Cl

n2l
E

ν4tr(TnD−1

k )2(TnD−1
k )2∗

l
+ ν4l tr


(TnD−1

k )2(TnD−1
k )2∗

l


≤
C

n2l


E

v−2trTnD−1

k (TnD−1
k )∗

l
+ ν4lv

4l−2EtrD−1
k (D−1

k )∗


≤
C

n2lv3l


1
vl + (ℑEtrTnD)l


+

ν4l

n2l−1v4l−1 ,

and,

E|αk |
2

≤
C

n2v3


1
v

+ ℑEtrTnD

.

Therefore we have

E

 1
p

n−
k=1

(Ek − Ek−1) bkαk


2l

≤
Cl

n2lv3l


1 + E


ℑ

1
n

trTnD
l

. (4.16)

Similarly, using (4.14)

E

 1
p

n−
k=1

(Ek − Ek−1) akβkbkγk


2l

= Cl p−2lv−2l

E


n−

k=1

Ek−1|γk |
2

l

+

n−
k=1

E|γk |
2l

 .
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For l ≥ 1,

E|γ̂k |
2l

≤
C

n2lvl


1
vl + (ℑEtrTnD)l


+

ν4l

n2l−1v2l−1 , (4.17)

and

E|γ̂k |
2

≤
C

n2v


1
v

+ ℑEtrTnD

. (4.18)

For any l ≥ 1, by Lemma 6.7

E|γ j − γ̂ j |
l
≤

Cl

nlvl + ClE
1n trTnD−1

− E
1
n

trTnD−1
l .

So,

E

 1
p

n−
k=1

(Ek − Ek−1) akβkbkγk


2l

≤
Cl

n2lv3l


1 + E


ℑ

1
n

trTnD
l


+
Cl

nlv2l
E
1n trTnD−1

− E
1
n

trTnD−1
2l

. (4.19)

Combining (4.16), (4.19) and selecting C0 such that Cl
nlv2l ≤

1
2 , we obtain that

E
1n trTnD−1

− E
1
n

trTnD−1
2l

≤
4Cl

n2lv3l


1 + E


ℑ

1
n

trTnD
l

. (4.20)

We will use the inductive method to complete the proof. When l = 1, we have

E
1n trTnD−1

− E
1
n

trTnD−1
2

≤
C

n2v3


1 + E


ℑ

1
n

trTnD


≤
C

n2v3 (1 + |Esn(z)|) ≤
C

n2v3 .

This shows that the lemma holds for l = 1. When l ∈ (1, 2], from (4.20) we have

E
1n trTnD−1

− E
1
n

trTnD−1
2l

≤
Cl

n2lv3l

1 +


E
1n trTnD−1

− E
1
n

trTnD−1
2
l/2

+ |Esn|
l

 ≤
C

n2lv3l
.

Assume that the lemma holds for l ∈ (2t , 2t+1
]. Consider the case where l ∈ (2t+1, 2t+2

]

E
1n trTnD−1

− E
1
n

trTnD−1
2l

≤
Cl

n2lv3l


1 + E

1n trTnD−1
− E

1
n

trTnD−1
l + |Esn|

l


≤

C

n2lv3l
,

which completes the proof of the lemma. �
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Lemma 4.3. Under the assumptions of Lemma 4.2, for any l ≥ 1, we have

E |sn − Esn|
2l

≤
Cl

n2lv3l
. (4.21)

Proof. Lemma 4.3 is obtained by repeating the argument of Lemma 4.2 and using

E|γ j − γ̂ j |
2l

≤
Cl

n2lv2l
+ ClE

1n trTnD−1
− E

1
n

trTnD−1
2l

≤
Cl

n2lv2l
+

Cl

n2lv3l
. �

Remark 4.4. From Lemmas 4.2 and 4.3, we know that for any l ≤ 4,

E|γ j |
2l

= O(n−lv−l), (4.22)

and for any v > C0n−1/2,

E|sn(z)| ≤ E|sn(z)− Esn(z)| + |Esn(z)| ≤ C. (4.23)

4.2. The proof that |b j | is bounded

Let b0 = (1 + n−1EtrD−1
n Tn)

−1. By the fact that ℑ(n−1trD−1
j ) > 0 and ℑ(r∗

j D
−1
j r j ) > 0, we

have

|β j | ≤ |z|v−1 and |b j | ≤ |z|v−1. (4.24)

Using Lemma 6.7 and (4.24), we have

|b0 − b j | ≤
1

nv
|b0b j | ≤

|z|

nv2 |b0|, (4.25)

which implies,

|b j | ≤


|z|

nv2 + 1


|b0|.

Therefore if v > C0n−1/2 with appropriate C0, then we have

|b j | ≤ C |b0|.

Recalling that −zsn =
1
n

∑n
j=1 β j and zsn(z) = yn − 1 + zynsn(z), we get

b0 = 1 − yn − zynEsn(z)+ κn (4.26)

where κn =
1
n

∑n
j=1(b0 − Eβ j ).

Lemma 4.5. If ℑ(z + κn) ≥ 0, then there exists a positive constant C such that

|b0| ≤ C.
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Proof. Consider the case ℑ(Esn(z)) ≥ v > 0 first. It follows from (4.26) and the assumption
that

ℑ(yn − 1 + zynEsn(z)+ z) ≥ −ℑ(b0)

= −|b0|ℑ(1 + n−1EtrD−1(z)Tn) ≥ |b0|
2λ

Tn
1 ynℑ(Esn).

Note that

ℑ(yn − 1 + zynEsn(z)+ z) = v + vynℜ(Esn(z))+ uynℑ(Esn(z)).

Thus we have

|b0|
2

≤
v + vynℜ(Esn(z))+ uynℑ(Esn(z))

λ
Tn
1 ℑ(Esn)

≤
(1 + yn|Esn(z)| + uyn)ℑ(Esn(z))

λ
Tn
1 ynℑ(Esn)

≤ C. (4.27)

Consider the case ℑ(Esn(z)) ≤ v next. Note that for u ∈ [a, b],

ℑ(Esn(z)) ≥
v

C + v2 . (4.28)

From (4.27) we have

|b0|
2

≤
(C + v2)(1 + yn|Esn(z)| + uyn)v

ynv
≤ C,

which completes the proof. �

Next, we aim at proving that for any v ≥ C0n−1/2, we have ℑ(z+κn) > 0. First, if ℑ(z+κn) = 0,
then we have |κn| ≥ ℑ(κn) = v and |b0| < C . Remembering the notation (2.3), we have

β j = b j − b2
jγ j + β j b

2
jγ

2
j . (4.29)

Then from (4.22) and (4.25), we get

|κn| =
1
n

 n−
j=1

E

(b j − b0)+ b3

jγ
2
j − b4

jγ
3
j + b4

jβ jγ
4
j

 ≤
C

nv
. (4.30)

Thus, choosing an appropriate C0 > (2C)1/4, if v > C0n−1/2, then

|κn| ≤
v

2
,

which contradicts with |κn| ≥ v. Therefore we have

ℑ(z + κn) ≠ 0. (4.31)

When taking v = 1, we have |b j | ≤ |z|. Then from (4.30),

|κn| ≤
C

n
,

which implies that for v = 1 and large n,

ℑ(z + κn) > 0.
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Combining (4.31) and the continuity of the function, we get ℑ(z + κn) > 0. Therefore we get for
any j = 0, 1, . . . , n,

|b j | < C. (4.32)

4.3. Proof of Lemma 4.1

In this part, we will proceed the proof of Lemma 4.1. If we estimate it by the method in [20],
we can see that ωn is controlled by En−1trD−2(D−2)∗. As far as we know, in the literature, the
best order of En−1trD−2(D−2)∗ is O(v−3) under the assumptions of Theorem 1.1. This forces
us to use different techniques as follows.

Denote Kn = (EsnTn + I)−1. By the fact that Tn is a positive definite Hermitian matrix, we
have

Tn = U∗
n

λ
Tn
1

. . .

λTn
p

Un,

where U∗
nUn = I. This implies

Kn = U∗
n

(Esnλ
Tn
1 + 1)−1

. . .

(Esnλ
Tn
p + 1)−1

Un .

Let

K1/2
n = U∗

n

(Esnλ
Tn
1 + 1)−1/2

. . .

(Esnλ
Tn
p + 1)−1/2

Un .

Denote Q = K1/2
n (K1/2

n )∗, then we have

Q2
= KnK∗

n .

Using the same method of calculating (4.1), we get that

(EsnTn + I)−1
+ zD−1

=

n−
j=1

β j


Knr j r∗

j D
−1
j −

1
n

KnTnD−1

.

Multiplying n−1Qm for m = 0, 1 on both sides of the above equality and taking the trace, we get

1
n

trQm(EsnTn + I)−1
+

z

n
EtrQmD−1

=
1
n

E
n−

j=1

β j


r∗

j D
−1
j QmKnr j −

1
n

trQmKnTnD−1


=
1
n

n−
j=1

d j =
1
n

n−
j=1

(d j1 − d j2 + d j3 − d j4 + d j5)
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where

d j1 = b j E


1
n

trQmKnTnD−1
j −

1
n

trQmKnTnD−1


d j2 = b2
j Eγ j


r∗

j D
−1
j QmKnr j −

1
n

trQmKnTnD−1


d j3 = b3
j Eγ

2
j


r∗

j D
−1
j QmKnr j −

1
n

trQmKnTnD−1


d j4 = b4
j Eγ

3
j


r∗

j D
−1
j QmKnr j −

1
n

trQmKnTnD−1


d j5 = b4
j Eβ jγ

4
j


r∗

j D
−1
j QmKnr j −

1
n

trQmKnTnD−1

.

Next, we will investigate the bound of d j . From (4.14) and (4.29),

d j1 =
b2

j

n2 E


trQmKnTnD−1
j TnD−1

j


+

1
n

E(−b3
jγ j + b4

jγ
2
j − b5

jγ
3
j + β j b

5
jγ

4
j )


r∗

j D
−1
j QmKnTnD−1

j r j


= d(1)j1 + d(2)j1 .

Note that TnKn = KnTn and QmTn = TnQm , by lemma (4.32), we can verify that

|d(1)j1 | ≤
C

n2 EtrQm+1D−1(D−1)∗.

Let ψ j = r∗

j D
−1
j QmKnTnD−1

j r j − n−1trD−1
j QmKnTnD−1

j Tn , from (4.15), Hölder’s inequality
and Lemma 6.5, we get

E|γ l
j


r∗

j D
−1
j QmKnTnD−1

j r j


| ≤ E|γ l

jψ j | + n−1E|γ l
j trD

−1
j QmKnTnD−1

j Tn|

≤


E|γ j |

2l
1/2 C‖Qm

‖

n1/2v3/2


1
n

trQ2
1/2

.

By (4.22), (4.32) and (4.24), we have

|d(2)j1 | ≤
C‖Qm

‖

n2v3


1
n

trQ2
1/2

.

Therefore, we conclude that for v > C0n−1/2,

|d j1| ≤
C

n2 trQm+1D−1(D−1)∗ +
C‖Qm

‖

nv


1
n

trQ2
1/2

.



86 Z. Bai et al. / Stochastic Processes and their Applications 122 (2012) 68–92

Using γ j = γ̂ j + n−1(trD−1
j Tn − EtrD−1

j Tn), we have

d j2 = b2
j Eγ̂ j


r∗

j D
−1
j QmKnr j −

1
n

trQmKnTnD−1
j


+

b2
j

n
Eγ j


β j r∗

j D
−1
j QmKnTnD−1

j r j


= d(1)j2 + d(2)j2 .

We obtain from Lemma 6.4 and (4.32),

|d(1)j2 | ≤
C

n2 trQm+1D−1
j (D

−1
j )

∗.

In view of (4.29) and the estimate of d(2)j1 , we have

|d(2)j2 | ≤
C‖Qm

‖

n2v3


1
n

trQ2
1/2

,

which implies that for v > C0n−1/2,

d j2 ≤
C

n2 trQm+1D−1
j (D

−1
j )

∗
+

C‖Qm
‖

nv


1
n

trQ2
1/2

.

Similarly, using (4.22), (4.24) and Hölder’s inequality, for v > C0n−1/2, we also have

|d jk | ≤
C‖Qm

‖

nv


1
n

trQ2
1/2

,

where k = 3, 4, 5. Therefore, summarizing the above arguments yields that for v > C0n−1/2,1n trQmKn +
z

n
trQmD−1

 ≤
C

n2 trQm+1D−1
j (D

−1
j )

∗
+

C‖Qm
‖

nv


1
n

trQ2
1/2

.

If m = 1, from Lemma 6.6, it is straightforward to get1n trQKn

 ≤
1
n

trQ2

and

C

n2 trQ2D−1
j (D

−1
j )

∗
≤

C

n2v2 trQ2.

Furthermore, using Lemma 6.6, we have for v < 1,

‖Q‖ = ‖Kn‖ ≤
4
v
.

Therefore, for 1 > v > C0n−1/2 and u ∈ [a, b], we conclude that1n trQD−1
 ≤

C

n
trQ2

+


C

n
trQ2

1/2

. (4.33)
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On the other hand, if m = 0, then we have1n trKn +
z

n
trD−1

 ≤
C

n2 trQD−1
j (D

−1
j )

∗
+

C

nv


1
n

trQ2
1/2

.

In addition, by Lemma 6.7 we obtain

1

n2 |E(trQD−1
j (D

−1
j )

∗)| =
1

n2 |E(trQD−1(D−1)∗)| + O


1

n2v3


.

Since D has the decomposition

D = V∗
n

(λ
Sn
1 − z)−1

. . .

(λSn
p − z)−1

Vn,

where V∗
nVn = I. This implies

EtrQD−1(D−1)∗ = EtrQV∗
n

|λ
Sn
1 − z|−2

. . .

|λSn
p − z|−2

Vn

= Ev−1trQV∗
n

ℑ(λ
Sn
1 − z)−1

. . .

ℑ(λSn
p − z)−1

Vn

= v−1EℑtrQD−1
≤ v−1

|EtrQD−1
|.

Then combining (4.33) and the definition of ωn , we conclude that

|zynωn| ≤
C

n2v
trQ2

+
C

nv


1
n

trQ2
1/2

, (4.34)

which implies that for v > C0n−1/2 with C0 >
√

2C ,

|zynωn| ≤
v

2n
trQ2

+
v

2


1
n

trQ2
1/2

. (4.35)

Moreover, recalling

− zωn =

∫
1

tEsn(z)+ 1
d Hn(t)+ zEsn(z). (4.36)

Taking the imaginary parts on both side of (4.36), we have∫
tℑEsn

|1 + tEsn(z)|
2 d Hn(t) = −ℑ(zωn)− ℑ(zEsn(z)).
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If ℑEsn ≥ v > 0, then from (4.35) we have

|ℑ(zωn)|

ℑEsn(z)
=

|vℜωn + uℑωn|

ℑEsn(z)

≤


C

n2v
+

1
2n


trQ2

+


C

nv
+

1
2


1
n

trQ2
1/2

.

And using (2.4), we get

|ℑzEsn(z)|

ℑEsn(z)
=

|vℜEsn(z)+ uℑEsn(z)|

ynℑEsn(z)
< C.

On the other hand, if ℑEsn ≤ v, then by (4.28), we also have the above two inequalities.
Therefore we have∫

t

|1 + tEsn|2
d Hn(t) ≤


C

n2v
+

1
2n


trQ2

+


C

nv
+

1
2


1
n

trQ2
1/2

+ C.

Furthermore, we have

1
n

trQ2
=

∫
1

|1 + tEsn|2
d Hn(t) ≤

1

λ
Tn
1

∫
t

|1 + tEsn|2
d Hn(t).

This yields for v > C0n−1/2 and u ∈ [a, b],

1
n

trQ2
≤ C.

Then together with (4.34), we conclude that

|ωn| ≤
C

nv
, (4.37)

which completes the proof of Lemma 4.1.

5. The proof of Theorem 1.3

From Theorem 1.1, we have

∆̃n ≤ sup
x

|FSn (x)− EFSn (x)| + O(n−1/2).

And also, by Proposition 2.2, we have

sup
x

|FSn (x)− EFSn (x)| ≤ C

∫ A

−A
|sn(z)− Esn(z)|du

+ 2πv−1
∫

|x |>B
|FSn (x)− EFSn (x)|dx

+ v−1 sup
x

∫
|u|≤2vc∗

|F yn ,Hn (x + u)− F yn ,Hn (x)|du + O(n−1/2)


.

Thus, by Lemma 4.3, to prove Theorem 1.3 we need to get the bound of |FSn (x) − EFSn (x)|
and |F yn ,Hn (x + u)− F yn ,Hn (x)| which are obtained as follows.
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Lemma 5.1. Under the assumptions of Theorem 1.1, we have∫
|x |>5

|FSn (x)− F yn ,Hn (x)|dx = o(n−2) a.s.

Proof. Note that if x > 5 then F yn ,Hn (x) = 1. Therefore we have∫
|x |>5

E|FSn (x)− F yn ,Hn (x)|dx =

∫
∞

5
(1 − EFSn (x))dx

=

∫
∞

5

1
p

p−
k=1

P(λSn
k > x)dx ≤

∫
∞

5
P(λSn

p > x)dx . (5.1)

It follows from (3.15) of [6] that,∫
|x |>5

|F Sn (x)− F yn ,Hn (x)|dx = O(n−2) a.s. � (5.2)

Lemma 5.2. Under the conditions of Theorem 1.1, for ∀ v > 0 we have

sup
x

∫
|u|≤v

|F y,H (x + u)− F y,H (x)|du ≤
4v2

π
√
λ0

√
y(1 −

√
y +

√
v)
.

Proof. From [8], we can get that the support of F y,H (x) is a subset of [λ0(1−
√

y)2, (1+
√

y)2].
Let Φ(x) =

 v
0 (F

y,H (x + u)− F y,H (x))du, we have

sup
x

∫
|u|≤v

|F y,H (x + u)− F y,H (x)|du

≤ sup
x≥λ0(1−

√
y)2

∫
|u|≤v

|F y,H (x + u)− F y,H (x)|du

≤ 2 sup
x≥λ0(1−

√
y)2

Φ(x). (5.3)

Then by Lemma 2.3, we have

Φ(x) =

∫ v

0

∫ x+u

x
f (t)dtdu ≤

∫ v

0

∫ x+u

x
π−1(λ0 yt)−1/2dtdu

=

∫ x+v

x
π−1(λ0 yt)−1/2(x + v − t)dt

≤
v

π
√
λ0 yn

∫ x+v

x

dt
√

t

=
2v

π
√
λ0 y

√
x + v −

√
x


=
2v2

π
√
λ0 y

√
x + v +

√
x
 ,

which together with (5.3) implies the lemma. �
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So in order to prove (1.3), we only need to show that for v = n−2/5,

∆̃n = O(v). (5.4)

From Lemma 4.3∫ A

−A
E|sn(z)− Esn(z)|

2du ≤
C

n2v3 = O(v2),

which together with Lemmas 5.1 and 5.2 implies (5.4).
Moreover, (1.4) follows from the inequality that for v = n−2/5+η and l > (5η)−1,

(by Lemma 4.3)∫ A

−A
E|sn(z)− Esn(z)|

2ldu ≤
C

n2lv3l
= O(v2ln−5lη).

Therefore, the proof of Theorem 1.3 is complete.

6. Some basic lemmas

In this section, we give some basic lemmas which are used in the paper.

Lemma 6.1 (Lemma 2.6 in [3]). Let A and B be two p × n complex matrices. Then

sup
x

|FAA∗

(x)− FBB∗

(x)| ≤
1
p

rank(A − B).

Lemma 6.2 (Lemma A.47 in [11]). Let A and B be two p × n complex matrices. Then

L


FAA∗

, FBB∗


≤ 2‖A‖ ‖A − B‖ + ‖A − B‖
2,

where L(·, ·) denotes the Lévy distance.

Lemma 6.3 (Lemma B.19 in [11]). Let F1, F2 be distribution functions and let G satisfy
supx |G(x + t)− G(x)| ≤ g(t), for all t ≥ 0, where g is an increasing and continuous function
such that g(0) = 0. Then

sup
x

|F1(x)− G(x)| ≤ 3 max


sup
x

|F2(x)− G(x)|, L (F1, F2) , g (L (F1, F2))


.

Lemma 6.4 ((1.15) of [9]). Let A =

ai j


p×p and B =

bi j


p×p be nonrandom matrices
and X = (x1, . . . , xn)

∗ be a random vector of independent entries. Assume that Exi = 0 and
E|xi |

2
= 1. Then we have,

E(X∗AX − trA)(X∗BX − trB)

=

p−
i=1

(E|xi |
4
− |Ex2

i |
2
− 2)ai i bi i + trAx BT

x + trAB, (6.1)

where Ax =

Ex2

i ai j


p×p and B =

Ex2

i bi j


p×p.
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Lemma 6.5 (Lemma 2.7 of [7]). Let A be an n × n nonrandom matrix and X = (x1, . . . , xn)
∗

be a random vector of independent entries. Assume that Exi = 0,E|xi |
2

= 1, and E |x j |
l
≤ νl .

Then, for any p ≥ 1,

E|X∗AX − trA|
p

≤ C p


ν4tr(AA∗)

p/2
+ ν2ptr(AA∗)p/2


,

where C p is a constant depending on p only.

Lemma 6.6 (Lemma 2.3 of [24]). For z = u + iv ∈ C+, let s(z) be the Stieltjes transform of
any distribution function, A be n × n Hermitian nonnegative definite matrix. Then

‖(s(z)A + I)−1
‖ ≤ max{4‖A‖/v, 2}.

Lemma 6.7 (Lemma 2.6 of [25]). Let z ∈ C+ with v = ℑz,A and Bn × n with B Hermitian,
τ ∈ R, and q ∈ CN . Then

|tr((B − zI)−1
− (B + τqq∗

− zI)−1)A| ≤
‖A‖

v
.

Lemma 6.8 ((1.2) of [26]). Let G be a function of bounded variation on the real line. Then for
any continuity points a < b of G, we have

G{[a, b]} = lim
ϵ↓0

1
π

∫ b

a
ℑsG(x + iϵ)dx,

where sG is the Stieltjes transform of G.

Lemma 6.9 (Burkholder Inequality). Let {Xk} be a complex martingale difference sequence with
respect to the increasing σ -field Fk , and let Ek denote conditional expectation with respect to
Fk . Then we have

(a) for p > 1,

E

 n−
k=1

Xk


p

≤ K pE


n−

k=1

|Xk |
2

p/2

, (6.2)

(b) for p ≥ 2,

E

 n−
k=1

Xk


p

≤ K ∗
p

E


n−

k=1

Ek−1|Xk |
2

p/2

+ E
n−

k=1

|Xk |
p

 . (6.3)
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