期刊论文详细信息
| STOCHASTIC PROCESSES AND THEIR APPLICATIONS | 卷:123 |
| Weak convergence of subordinators to extremal processes | |
| Article | |
| Kella, Offer1  Loepker, Andreas2  | |
| [1] Hebrew Univ Jerusalem, Dept Stat, IL-91905 Jerusalem, Israel | |
| [2] Univ Hamburg, Dept Econ & Social Sci, D-22043 Hamburg, Germany | |
| 关键词: Levy process; Subordinator; Extremal process; Small-time convergence; | |
| DOI : 10.1016/j.spa.2013.03.010 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
For certain subordinators (X-t)(t >= 0) it is shown that the process (-t log X-ts)(s>0) tends to an extremal process ((eta)over cap(s))(s>0) in the sense of convergence of the finite dimensional distributions. Additionally it is also shown that (z boolean AND(-t log X-ts))(s >= 0) converges weakly to (z boolean AND<^>(eta)over cap(s))(s >= 0) in D[0, infinity), the space of cadlag functions equipped with Skorohod's J(1) metric. (C) 2013 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_spa_2013_03_010.pdf | 206KB |
PDF