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Abstract

For certain subordinators (X t )t≥0 it is shown that the process (−t log X ts)s>0 tends to an extremal
process (ηs)s>0 in the sense of convergence of the finite dimensional distributions. Additionally it is also
shown that (z∧(−t log X ts))s≥0 converges weakly to (z∧ηs)s≥0 in D[0,∞), the space of càdlàg functions
equipped with Skorohod’s J1 metric.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

It was shown in [1] that if (X t )t>0 is a family of positive random variables and if X is a non-
constant random variable with distribution function F , then X−t

t converges weakly to X as t → 0
if and only if ψt (u1/t ) → 1 − F(u) as t → 0 at all continuity points u of F , where ψt is the
Laplace transform of X t . In [2] it was found that for the convolution familyψt (u) = ϕ(u)t , where
ϕ is the Laplace transform of an infinitely divisible random variable, i.e. if the process X t is a
subordinator, the limit distribution, if not concentrated on a single point, is always a Pareto distri-
bution. Equivalently we can formulate the convergence in terms of the convergence of −t log X t
as t tends to zero, with the only possible limit distribution being the exponential distribution. We
will apply and extend these results to show that in fact the process (−t log Xst )s>0 converges to a,
so called, extremal process (ηs)s>0, to be reviewed in Section 3. We will first observe the conver-
gence of the finite dimensional distributions and then establish weak convergence of a truncated
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version in D[0,∞), the space of càdlàg functions equipped with Skorohod’s J1 metric. Since the
prelimit and limit processes are Markovian, this will be done by proving uniform convergence of
the associated generators and applying the necessary theory from [6] for this setup.

2. Setup, review and convergence of finite dimensional distributions

Let (X t )t≥0 be a pure jump subordinator, i.e. an increasing Lévy process with

ψt (u) = E(e−u X t ) = e−tϕ(u), (1)

where

ϕ(u) =


∞

0
(1 − e−ux ) dν(x) (2)

and the Lévy measure ν in this case must satisfy ν(−∞, 0] = 0, ν(1,∞) < ∞ and

ρ =


[0,1]

u dν(u) =

 1

0
ν(x, 1]dx < ∞. (3)

We recall that G t (x) = P(X t ≤ x) is an infinitely divisible distribution.

In what follows ∧ and ∨ denote minima and maxima (respectively),
d
= denotes equality in

distribution,
d
⇒ is for convergence in distribution and x ↓ x0 means x → x0, x > x0. Finally,

for finite γ > 0, denote by Eγ an exponential random variable with mean 1/γ .
In [2] the following result was proved.

Theorem 1. Let Z be a positive random variable which is not concentrated at one point and let
F(x) = P(Z ≤ x). The following statements are equivalent.

(S1) −t log X t
d
⇒ Z as t ↓ 0.

(S2) tϕ(u1/t ) → − log(1 − F(u)) as t ↓ 0, for all continuity points u of F.

(S3) −t log X t
d
⇒ Eγ as t ↓ 0 for some finite γ > 0.

Furthermore, for any finite γ > 0 the following statements are equivalent.

(S4) −t log X t
d
⇒ Eγ as t ↓ 0.

(S5) ϕ(s)/ log s → γ as s → ∞.
(S6) log G1(x)/ log x → γ as x ↓ 0.
(S7) ν(x,∞)/ log x → −γ as x ↓ 0.

Note that since ν(ϵ,∞) < ∞ for any ϵ > 0, then (S7) is equivalent to

(S7’) ν(x, ϵ]/ log x → −γ as x ↓ 0.

Also note that this condition cannot hold for a compound Poisson process, so that when it does
hold then necessarily ν(0, ϵ] = ∞, which in turn implies that X t > 0 almost surely for each
t > 0 and thus −t log X t is well defined for all t > 0.

Several examples of subordinators fulfilling these conditions are given in [2]. A prominent
member is the gamma process, where

G t (x) =
λγ t

Γ (γ t)

 x

0
uγ t−1e−λu du. (4)

The following is a generalization of Proposition 2.2 of [2] to the multidimensional and depen-
dent case.
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Proposition 1. For each t > 0, let (X i,t )1≤i≤n be a random vector with almost surely positive
components and assume that for some random vector (X i )1≤i≤n ,

(−t log X i,t )1≤i≤n
d
⇒ (X i )1≤i≤n . (5)

Then, 
−t log


k

i=1

X i,t


1≤k≤n

d
⇒


k

i=1

X i


1≤k≤n

, (6)

as t ↓ 0.

Proof. It is well known that on a possibly different probability space we can take (X̃ i,t )1≤i≤n
d
=

(X i,t )1≤i≤n and (X̃ i )1≤i≤n
d
= (X i )1≤i≤n , where

(−t log X̃ i,t )1≤i≤n → (X̃1)1≤i≤n (7)

almost surely. Since any (Borel) function of (X̃ i,t )1≤i≤n is distributed like that of (X i,t )1≤i≤n (and
similarly for the limits) this implies that it suffices to show the validity of this proposition for the
deterministic case, where the multidimensional convergence in (5) is equivalent to the conver-
gence of each coordinate separately. Observing each such coordinate, it is apparent that it suf-
fices to show this for the case n = 2 and then proceed by induction. This can be concluded from
Proposition 2.2 of [2], but we would also like to point out the straightforward alternative below.

Note that if −t log a(t) → a and −t log b(t) → b then

−t log(a(t) ∧ b(t)) = (−t log a(t)) ∨ (−t log b(t)) → a ∨ b

and, similarly, −t log(a(t)∨b(t)) → a∧b, all as t ↓ 0. Since a(t)∧b(t)+a(t)∨b(t) = a(t)+b(t)
it therefore follows that it suffices to treat the case where a(t) ≥ b(t) for all t > 0 and a ≤ b.
For this case we have that

0 ≤ log(a(t)+ b(t))− log a(t) = log


1 +
b(t)

a(t)


≤ log 2 (8)

and thus t log(a(t)+ b(t))− t log a(t) → 0 as t ↓ 0 and the proof is complete. �

Remark 1. Of course, if we assume in Proposition 1 that (X i,t )1≤i≤n are independent, then

(−t log X i,t )1≤i≤n
d
⇒ (X i )1≤i≤n if and only if −t log X i,t

d
⇒ X i for each i and (X i )1≤i≤n are

independent as well (on an appropriate probability space). This will be needed in what follows.

We now recall that if, in Proposition 1, (X i,t )t≥0 are independent subordinators, then X i are
independent and are either constant or necessarily exponential. Thus, when they are all expo-
nential, the distribution of the kth coordinate on the right side of (6) is exponential as well, with
parameter given by the sum of the first k parameters for the individual limits.

Now let 0 = s0 < s1 < s2 < · · · < sn and, for i = 1, . . . , n, let (X i,t )t≥0 be i.i.d. copies of
(X t )t≥0. It follows from the stationary and independent increment property of the Lévy process
X t that

Xsk t =

k
i=1

(Xsi t − Xsi−1t )
d
=

k
i=1

X i,(si −si−1)t . (9)
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Consequently, with Z1, Z2, . . . being i.i.d. exp(1) random variables (so that Zi/β
d
= exp(β)),

applying (6) it follows that, as t ↓ 0,


−t log Xs1t ,−t log Xs2t , . . . ,−t log Xsn t

 d
⇒

1
γ


k

i=1

Zi

si − si−1


1≤k≤n

. (10)

Hence, we see that we have convergence of the finite dimensional distributions of
(−t log X ts)s>0 to those of some process (ηs)s>0, where

ηs1 , . . . ,ηsn


is distributed like the

right hand side of (10).
In the next section we will identify this process, which turns out to be a known one and then

show in the following section that the convergence of a truncated version of the process above
holds in the sense of weak convergence in D[0,∞).

3. The extremal process

Recall that Z1, Z2, . . . are i.i.d. exp(1) random variables and let Mn =
1
γ

n
k=1 Zk . Then the

process (n · M[tn]+1)t>0 converges as n → ∞ weakly to a process (ηt )t>0, the so called extremal
process (see [4,7]). This process has the following properties (see Section 4.3 in [8]).

1. η is stochastically continuous and has a version in D[0,∞) (from hereon this is the assumed
version).

2. η has non-increasing paths, is piecewise constant, almost surely lims→0ηs = ∞ and
lims→∞ηs = 0.

3. the finite dimensional distributions are given by the right hand side of (10), in particular

P(ηsi > xi , i = 1, . . . , n) = exp


−γ

n
i=1

(si − si−1)

n
j=i

x j


. (11)

4. The holding times in x are exponential with rate γ x .
5. If the process jumps at time t thenηt = ηt− · U , where U is independent of {ηs, 0 ≤ s < t}

(in an appropriate sense) and has a uniform distribution in [0, 1].

Now let η0 be a random variable with values in (0, z] for some z > 0, independent of
{ηt , t ≥ 0} and define

ηt :=ηt ∧ η0. (12)

The process ηt is a Markov process that inherits the above properties 1–5 fromη, except for the
following.

2∗. η has non-increasing paths, is piecewise constant, almost surely lims→∞ ηs = 0.
3∗. The finite dimensional distributions are given by


ηs1 , ηs2 , . . . , ηsn

 d
=


η0 ∧

1
γ


k

i=1

Zi

si − si−1


1≤k≤n

. (13)

For a proof note that the first jump below η0 of the process η will go uniformly into the interval
[0, η0]. Since from then on the process η will continue just likeη, we only have to show that the
holding time in η0, given by T = inf{t > 0 : ηt ≤ η0}, has an exponential distribution with rate



3126 O. Kella, A. Löpker / Stochastic Processes and their Applications 123 (2013) 3122–3131

γ η0. Indeed, we have for all s > 0, P(T > s|η0) = P(ηs > η0|η0) = e−γ sη0 . The property 3∗ is
obvious from the construction.

The Markov process η has state space [0, z], but we extend it to (−∞, z] by letting ηt = η0
whenever η0 ≤ 0. The reason is, that the process −t log X ts can also attain negative values.

It follows from the above properties that the transition probabilities of the Markov process η
are given for 0 ≤ x < y by

P(ηs+t > x |ηs = y) = exp(−γ t x), t, s ≥ 0. (14)

Let Cz denote the class of continuous functions f : (−∞, z] for which f (x) → 0 as x → −∞.
The transition semi-group of the process is, for functions f ∈ Cz , given by

Pt f (x) := Ex [ f (ηt )] =

e−γ t x f (x)+ γ t
 x

0
f (y)e−γ t y dy; x ≥ 0

f (x); x < 0.
(15)

Consequently the limit

lim
t→0

Ex [ f (ηt )] − f (x)

t
= −γ x f (x)+ γ

 x

0
f (y) dy (16)

for x ≥ 0 and zero for x < 0 exists uniformly at least for f ∈ Cz . Moreover, the Feller property
holds, i.e. Pt Cz ⊂ Cz and Pt f (x) → f (x) as t → 0 for f ∈ Cz .

For f ∈ Cz the generator of the Markov process η is then given by

A f (x) = γ x
 1

0 ( f (xy)− f (x)) dy = γ
 x

0 ( f (y)− f (x)) dy (17)

for x ≥ 0 and A f (x) = 0 for x < 0, so A f ∈ Cz . We choose a smaller domain, namely those
functions f ∈ Cz which are differentiable with derivative f ′

∈ Cz . Let DA denote this class.
Using integration by parts or Fubini’s theorem, we can write

A f (x) = −γ

 x

0

 x

y
f ′(u) du dy = −γ

 x

0
u f ′(u) du. (18)

Note that if f ∈ DA then also Pt f ∈ DA since for x ≥ 0

(Pt f )′(x) = e−γ t x ( f ′(x)− γ t f (x))+ γ te−γ t x f (x) = e−γ t x f ′(x). (19)

4. Convergence in D[0, ∞)

Recalling (12), the following is the main result of this paper.

Theorem 2. Suppose that the subordinator (X)t≥0 satisfies one of the conditions of Theo-
rem 1 and that z ∈ (0,∞). Then

(z ∧ (−t log X ts))s≥0
d
⇒ (ηs)s≥0 (20)

as t → 0 weakly in (D[0,∞), J1) and η0 = z.

Proof. Let us write X t = X ′
t + X ′′

t , where X ′
t has Lévy measure ν′(A) = ν(A ∩ (0, 1)) and X ′′

t
has Lévy measure ν′′(A) = ν(A ∩ [1,∞)). That is, X ′

t captures the small jumps and X ′′
t is a

compound Poisson process with jumps of size at least one. It is well known that X ′
t and X ′′

t are
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independent. Moreover, X ′′
t = 0 for t < κ , where κ is an exponential random variable, so that

X t = X ′
t for t < κ . Since we are interested in the limiting behavior as t → 0, we may assume

that ν is concentrated on (0, 1). Then X t is a Markov process with generator [3] given by

L f (x) =

 1

0
( f (x + y)− f (x))ν(dy), x ≥ 0 (21)

for appropriate functions f : [0,∞) → R. For fixed t the process η(t)s = −t log X ts ∧ z is a
Markov process with sample paths in D[0,∞). The time-change Xs → X ts transforms L f into
tL f (x), while the subsequent state-space transformation X t → g(X t ), with g(x) = −t log x ,
changes tL f (x) to t (L ( f ◦ g))(g−1(x)); see e.g. [5]. Hence the generator of the process η(t)s ,
which has state space (−∞, z], is given by

A (t) f (x) = t
 1

0
( f (−t log(y + e−x/t ))− f (x)) ν(dy), (22)

for x ≤ z and functions in DA . For the transition semi-group of η(t) we obtain

P(t)
s f (x) = E[ f (−t log X ts ∧ x)], x ≤ z. (23)

Hence, P(t)
s f ∈ Cz and P(t)

s f (x) → f (x) as s → 0 by dominated convergence and the fact that
−t log X ts → ∞ as s → 0. It follows that for every t > 0 the process η(t) has the Feller-property.

In Lemma 1 to follow we will show that, for every z > 0, A (t) f → A f uniformly on
(−∞, z]. As the process is non-increasing and thus, one does not need to consider uniform
convergence on the entire state space R, it will follow from Theorem 6.1, p. 28 in [6] that the re-
spective transition operators converge too, provided that DA is a core for the generator. But this
follows from Proposition 3.3, p. 17 in [6] since DA is dense in Cz and Pt f ∈ DA if f ∈ DA
(as was shown in (19)). From Theorem 2.5, p. 167 in [6] it then follows, using the Feller-property
of η(t), that η(t) tends to η in D[0,∞). Since −t log X ts tends to ∞ as s → 0, it is clear that
η0 = z. �

Lemma 1. Suppose that condition (S7) of Theorem 1 holds, let f ∈ Cz be differentiable with
f ′

∈ Cz and recall

A (t) f (x) = t

(0,1]

( f (−t log(y + e−x/t ))− f (x)) ν(dy), (24)

as well as

A f (x) = γ

 x

0
( f (y)− f (x))1[0,∞)(x) dy. (25)

Then, for each z > 0,

lim
t↓0

sup
x∈(−∞,z]

A (t) f (x)− A f (x)
 = 0. (26)

Proof. Denote ∥ f ′
∥ ≡ supx∈(−∞,z] | f ′(x)| (< ∞ as f ′

∈ Cz). Since
| f (x)− f (y)| ≤ ∥ f ′

∥|x − y| then, for 0 < y ≤ 1,

| f (−t log(y + e−x/t ))− f (x)| ≤ ∥ f ′
∥| − t log(y + e−x/t )− x |

= ∥ f ′
∥| log(y + e−x/t )+ log ex/t

|t
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= ∥ f ′
∥t log(yex/t

+ 1)

≤ ∥ f ′
∥t yex/t . (27)

Thus, recalling that

ρ ≡


(0,1]

yν(dy)


=

 1

0
ν(y, 1]dy


< ∞ , (28)

we have that for x ≤ 0

|A (t) f (x)| ≤ ∥ f ′
∥ρt2ex/t

≤ ∥ f ′
∥ρt2. (29)

Since A f (x) = 0 for x ≤ 0, this implies that

lim
t↓0

sup
x≤0

|A (t) f (x)− A f (x)| = 0 (30)

as t → 0.
Next, note that for 0 ≤ x ≤ z,

(0,1]

( f (−t log(y + e−x/t ))− f (x)) ν(dy)

= −


(0,1]

 x

−t log(y+e−x/t )

f ′(u)duν(dy)

= −

 x

−t log(1+e−x/t )

f ′(u)ν

e−u/t

− e−x/t , 1


du. (31)

In particular, upon substituting y = e−u/t
− e−x/t , so that

dy = −e−u/t du/t = −(y + e−x/t )du/t,

we have that
 0

−t log(1+e−x/t )

f ′(u)ν(e−u/t
− e−x/t , 1]du


≤ ∥ f ′

∥

 0

−t log(1+e−x/t )

ν(e−u/t
− e−x/t , 1]du

= t∥ f ′
∥

 1

1−e−x/t

ν(y, 1]

y + e−x/t dy

≤ t∥ f ′
∥

 1

1−e−x/t
ν(y, 1]dy

≤ t∥ f ′
∥

 1

0
ν(y, 1]dy = t∥ f ′

∥ρ. (32)

The last expression clearly vanishes as t ↓ 0 and in particular when multiplying it by t . Thus the
left side converges to zero uniformly on x ∈ [0, z].

From (30), (32) and

A f (x) = γ

 x

0
( f (y)− f (x))dx = −γ

 x

0
f ′(u)udu, (33)
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it remains to show that for each z > 0

lim
t↓0

sup
x∈[0,z]

 x

0
f ′(u)


γ u − tν


e−u/t

− e−x/t , 1


du

 = 0. (34)

We clearly have that x

0
f ′(u)


γ u − tν


e−u/t

− e−x/t , 1


du


≤ ∥ f ′

∥

 x

0

γ u − tν

e−u/t

− e−x/t , 1
 du. (35)

Substituting y = e−u/t
−e−x/t , adding and subtracting γ log y in the second line of the following

equation and rearranging terms give x

0

γ u − tν

e−u/t

− e−x/t , 1
 du

= t2
 1−e−x/t

0

−γ log(y + e−x/t )− ν(y, 1]
 dy

y + e−x/t

≤ γ t2
 1

0

1 −
ν(y, 1]

−γ log y

 − log y

y + e−x/t dy + γ t2
 1

0

log(y + e−x/t )− log y

y + e−x/t dy. (36)

Substituting y = e−x/tv gives 1

0

log(y + e−x/t )− log y

y + e−x/t dy =

 ex/t

0

log(v + 1)− log v
v + 1

dv

≤


∞

0

log(v + 1)− log v
v + 1

dv. (37)

Since
 ϵ

0 (− log v)dv = ϵ(1 − log ϵ) < ∞ and since

log(v + 1)− log(v)
v + 1

=
1

v + 1

 v+1

v

1
u

du ≤
1

v2 (38)

it follows that the right hand side of (37) is finite and thus the second term of the right hand side
of (36) converges to zero uniformly on x ∈ [0,∞). Therefore, as the first term on the right hand
side of (36) is bounded above (on x ∈ [0, z]) by

γ t2
 1

0

1 −
ν(y, 1]

−γ log y

 − log y

y + e−z/t dy (39)

it remains to show that (39) vanishes as t ↓ 0.
Clearly, for any δ ∈ (0, 1), 1

δ

1 −
ν(y, 1]

−γ log y

 − log y

y + e−z/t dy ≤

 1

δ

1 −
ν(y, 1]

−γ log y

 − log y

y
dy < ∞, (40)
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so that upon multiplying by t2 the left side converges to zero. Also, note that e−z/t

0

− log y

y + e−z/t dy ≤ ez/t
 e−z/t

0
(− log y)dy

= ez/t
· e−z/t 1 − log e−z/t

= 1 +
z

t
(41)

which, upon multiplication by t2, vanishes as t ↓ 0. Therefore, also

γ t2
 e−z/t

0

1 −
ν(y, 1]

−γ log y

 − log y

y + e−z/t dy (42)

vanishes as t ↓ 0, since by the assumptions
1 −

ν(y,1]

−γ log y

 is bounded on [0, z].
To complete the proof, in view of (40) and (42), it remains to show that for any ϵ > 0 there is

some δ > 0 and some T > 0, such that for all 0 < t < T

t2
 δ

e−z/t

1 −
ν(y, 1]

−γ log y

 − log y

y + e−z/t dy < ϵ. (43)

By the assumption we can pick some 0 < δ < 1 such that, for all 0 < y < δ,1 −
ν(y, 1]

−γ log y

 < ϵ

z2 . (44)

Then, take T =
z

− log δ and note that t < T if and only if e−z/t < δ. We now have that for all
0 < t < T ,

t2
 δ

e−z/t

1 −
ν(y, 1]

−γ log y

 − log y

y
dy <

ϵt2

z2

 δ

e−z/t

− log y

y
dy

≤
ϵt2

z2 (− log e−z/t )

 δ

e−z/t

1
y

dy

=
ϵt

z


log δ − log e−z/t

= ϵ


t
log δ

z
+ 1


< ϵ

and the proof is complete. �
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