期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:133
The shape of the value function under Poisson optimal stopping
Article
Hobson, David1 
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
关键词: Poisson optimal stopping;    Diffusion process;    Monotonicity and convexity;    Coupling;    Time-change;   
DOI  :  10.1016/j.spa.2020.12.001
来源: Elsevier
PDF
【 摘 要 】

In a classical problem for the stopping of a diffusion process (X-t)(t >= 0), where the goal is to maximise the expected discounted value of a function of the stopped process E-x[e(-beta tau) g(X-tau)], maximisation takes place over all stopping times tau. In a Poisson optimal stopping problem, stopping is restricted to event times of an independent Poisson process. In this article we consider whether the resulting value function V-theta(x) = sup(tau is an element of T)(T-theta) E-x[e(-beta tau) g(X-tau)] (where the supremum is taken over stopping times taking values in the event times of an inhomogeneous Poisson process with rate theta = (theta(X-t)(t >= 0)) inherits monotonicity and convexity properties from g. It turns out that monotonicity (respectively convexity) of V-theta in x depends on the monotonicity (respectively convexity) of the quantity theta(x)g(x)/theta(x)+beta rather than g. Our main e(x)+/- p technique is stochastic coupling. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2020_12_001.pdf 1740KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次