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Abstract

In a classical problem for the stopping of a diffusion process (X;);>(, where the goal is to maximise
the expected discounted value of a function of the stopped process EX [e—P Tg(X¢)], maximisation takes
place over all stopping times 7. In a Poisson optimal stopping problem, stopping is restricted to event
times of an independent Poisson process. In this article we consider whether the resulting value function
Vo(x) = SUPL <77 (T?) EX[e—P Tg(X¢)] (where the supremum is taken over stopping times taking values in
the event times of an inhomogeneous Poisson process with rate 6 = (6(X;));>() inherits monotonicity
and convexity properties from g. It turns out that monotonicity (resgectively convexity) of Vp in x
depends on the monotonicity (respectively convexity) of the quantity 0((); )ﬁ? rather than g. Our main
technique is stochastic coupling.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

In a classical optimal stopping problem the objective is to maximise the expected dis-
counted payoff, where the payoff is a function of some underlying process, typically a
time-homogeneous diffusion, and the maximisation takes places over all stopping times. In
a Poisson optimal stopping problem (Dupuis and Wang [7], Lempa [17], Lange et al. [16]
— the terminology was introduced by [16]) the set of potential stopping times is restricted
to be the set of event times of an independent Poisson process. The idea behind introducing
the Poisson optimal stopping problem is that in many applications (for example, the optimal
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time to sell a financial asset) there are restrictions on when stopping can occur (for example,
liquidity restrictions may mean that buyers are not always available). If the underlying process
to be stopped is Markovian, then it is very convenient (and also often realistic) to model the
set of candidate opportunities to stop as the event times of a (not-necessarily homogeneous)
Poisson process, as this will preserve the Markov property. In this article we want to consider
the properties of the solution to the Poisson optimal stopping problem, where we allow the rate
of the Poisson process to depend on the underlying diffusion. Rather than studying a specific
problem, we study a general class of problems, and look for general features of the value
function.
Let X be a diffusion process, g a non-negative payoff function and 8 an impatience factor.
The classical optimal stopping problem is to find
w) = sup  Ee T g(Xo)], M
€T ([0,00))
where T(T) is the set of all stopping times taking values in T, and in this case T = [0, 00).
The Poisson optimal stopping problem, introduced by Dupuis and Wang [7] in the case where
X is exponential Brownian motion and extended to general diffusion processes by Lempa [17],
is to find

Vi) = sup E*[e”"Tg(X)] @)
TeT(Th)
where T* is the set of event times of a Poisson process with rate A.

The Poisson optimal stopping problem has been extended in many ways and to many
settings, for example to allow for regime switching (Liang and Wei [18]), non-exponential
inter-arrival times (Menaldi and Robin [20]) and running costs and multi-dimensions (Lange
et al. [16]). A related work in which actions are constrained to occur only at event times of a
Poisson process is Rogers and Zane [24] who model portfolio optimisation.

Hobson and Zeng [13] consider an extension of (2) in which the agent can choose the
rate of the Poisson process (dynamically) subject to a cost which depends on the chosen rate.
Motivated by this example, in this paper we consider the extension of (2) to a state-dependent,
inhomogeneous Poisson process and the problem of finding

Vo(x) = sup E'[e”""g(X,)] 3)
€T (TY)
where T? is the set of event times of a time-inhomogeneous Poisson process with rate 6(X,)
at time 7. (We will use the symbol A in the case of a constant-rate Poisson process, and 6 in
the case of a state-dependent Poisson process, but essentially the only purpose of a different
notation is to allow us to highlight the results in the constant rate case.)
One approach to solving (3) (and also (2)) is to use the Bellman-type representation

Vo(x) = E* (e~ max{g(Xy9), Vo(X0)}] 4)

where T19 is the first event time of the Poisson process with rate 6 = {6(X,)},>0. This
representation is based on the fact that at the first event time of the Poisson process the agent
chooses between stopping and continuing. Solving (4), even numerically, may be challenging
as the unknown Vj appears on both sides. One strategy, as described in Lange et al. [16] is as
follows. Let VB(") denote the value function under the restriction that stopping is constrained
to lie in the first n events of the Poisson process. If we set VG(O) = 0 then the family (VQ(")),,EI
solves

n X — 0 n—
V" (x) = E¥[e T max{g(X o), 4 ‘>(XT10)}]. 5)
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Since Ve(l) >0= Ve(o) it is easy to see that Vg(") is increasing in n (this is also clear from the
definition) and therefore Vg(oo) defined by VO(OO)(x) = lim,400 V(,(")(x) exists. Moreover, since
we expect that Vg(oo) = Vy we have found our solution.

In this article we are concerned with the monotonicity and convexity in x of Vy(x). A
secondary goal is to understand the relationship between VQ(OO) and Vy. We give a simple
sufficient condition for equality, but also an example to show that they are not always equal.

Temporarily, instead of an optimal stopping problem, consider a fixed-horizon problem:
U(x) = E¥[e P“g(X,)] where K is a constant time. Suppose g is increasing: a simple Doeblin
coupling argument (see Lindvall [19, p24], Bergmann et al. [3], Henderson et al. [11]) gives
that U is also increasing. Further, if X is exponential Brownian motion and g is convex then
w is convex (Cox and Ross [5]). Subject to the condition that X is a martingale, this convexity
result has been extended to general time-homogeneous diffusions by El Karoui et al. [9] using
stochastic flows, Bergman et al. [3] using pdes and Hobson [12] using coupling.

Now return to the classical optimal stopping problem (1). Again, a simple coupling argument
gives that if g is increasing then so is w. Merton [21, Theorem 10] shows that if g is convex
and X is exponential Brownian motion then w is convex. Hobson [12], see also Ekstrgm [8],
gives a coupling argument to show that if X is a martingale diffusion and g is convex then w
is convex. If we look for results which apply simultaneously across all diffusions then this is
the best we can hope for (see Example 2.2) although in the non-martingale case Alvarez [1]
gives sufficient conditions for convexity which combine the payoff and the minimal decreasing
B-excessive function of a given diffusion.

The first goal of this paper is to consider similar issues for V. If g is increasing in x, does
Ve inherit this monotonicity property? If g is convex, does Vj inherit convexity? We give an
example to show that monotonicity of g is not sufficient for monotonicity of Vj, and convexity
of g is not sufficient for convexity of Vj, even when X is a martingale diffusion.

Our first results are that if g and 6 are both increasing, then Vj is increasing, and if g is
convex (and X is a martingale) then V, is convex. We give simple coupling proofs of these
statements. Our main result is more refined, and includes the above results as special cases:

subject to regularity conditions, if 6 and ﬁg—fg are increasing then Vj is increasing, and if ﬁ%

is convex (and X is a martingale) then Vj is convex. Again, our proofs depend on coupling
arguments. Our main technique is to show that there is a time-change A = (/A;)s>0 such that
if ¥ = (¥)s0 is given by Yy = X 4, then

g(YT)e(YT):|
B+06(Yr)

where 7T is an independent unit-rate exponential random variable. We use this representation to

show that if ¥ = ﬂ% has monotonicity (respectively convexity) properties in x then so does

Go(x) = E* [e_ﬁTlg g(X 70 )] (for convexity in x we need that X is a martingale). Then we

E* [e*ﬂTf g(XTle)] — E [ 6)

deduce corresponding properties for V(,(oo). The key role of the shape of ¥ is apparent from (6).
The second goal of the paper is to consider the relationship between Vj, and V(,(C’o). Clearly
VG(OO) < Vjy. We show by example that the equality may be strict. However, subject to a growth
condition on g and the condition that the time of the nth event of the Poison process increases
to infinity, there is equality and Ve(”) approaches V9(°°) = Vy.
The paper is structured as follows. The next section contains some simple, stylised examples,
or rather counterexamples, which show in part that the questions we consider are interesting.

Section 3 gives a precise formulation of the problem, gives some first results, and explains
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how to change the problem for a general one-dimensional diffusion to a problem involving a
diffusion in natural scale. Section 4 discusses the monotonicity and convexity of V(Oo) Finally,
Section 5 compares Vg(oo) to Vy and gives conditions such that V(°°> Ve, and hence deduces
monotonicity and convexity results for Vj.

2. Examples and counterexamples
Example 2.1. We might expect limy 1 Vi(x) = w(x), but this is not always the case.
Let X be Brownian motion on R and let g(x) = I{yeq). Then w(x) =1 > Vy(x) =0.

We conclude that we expect to need some conditions on g in order to get reasonable results.

Example 2.2. Let X be Brownian motion with positive unit drift on [0, co), absorbed at zero.

Let H, denote the first hitting time by X of z. Let g(x) = x and let y = argmax({ e m)}
If Xo=x and dX, =dB, +dt then for 0 < x <y,
. 0= ginh(x /T + 2
U)(X) — El[eiﬂ(HO/\H".)XHo/\H,] — ye . Sin ()C + ﬁ) (7)
? sinh(y+/T + 2B)

with w(x) = x for x > y (see Borodin and Salminen [4, 3.0.5(b)] for the second equality in
(7)). It follows that w is neither convex nor concave.

We conclude that unless X is a martingale there is no reason to expect that convex g leads
to convex w, and a fortiori that convex g leads to convex V; or Vj.

For the next example, and for use in other examples later in the article, for ¢ > 0 let oz;f
(respectively o) be the positive (respectively negative) root of Q. () = 0 where
o2
Qi(a) = 711(01 - D+ pa—2c.

Note that if ¢ > u then of > 1.
Example 2.3 (Dupuis and Wang). Suppose X is exponential Brownian motion, with drift u < g

and volatility ¢ > 0. Suppose g(x) = (x — K)* and consider stopping times which are
constrained to lie in the set of events times of a time-homogeneous Poisson process with rate A.

Let L = K(1+ ———+*———). Then the optimal stopping time is T = inf{u € T* : X,, >
(B+2)ag —pag ;=4
L} and
+
L—K) ()" 0<x<L
Vilx) = ( )(L) ag Ax—K ==
LA(L —K) (i) i (xfx) x> L.

In this example Vi(x) > g(x) on (0, L) and V;(x) < g(x) on (L, 0o0). Note that as A 1 oo,
’3 ) and V,(x) 1 w(x) where

w(x) = {(M— K) ()% 0<x=M ®)
(x—K) x> M.

For future reference, note that in this canonical example

—(B—w)t 52
E* [supe‘ﬂ’g(Xs)} <E* |:supe_ﬂ“Xs:| =7 1%
208 — 1)

s>t s>t
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Example 2.4. Suppose g(x) = x and suppose X is exponential Brownian motion started
at x > 0, with volatility o and drift © with 4 < B. Then w(x) = x (it is always optimal
to stop immediately) and V;(x) = px where p = ﬁ € (0, 1). To see this note that it is
always optimal to stop at the first event of the Poisson process and then with 77 denoting an
exponential random variable with rate y

A
—_—x.
At+pB—p
Now suppose 6(x) = oo for x < J and O(x) = 0 for x > J. Therl, for0 < x < J,
Vy(x) = x. For x > J, Vy(x) = E*[Je P"/]. In particular, Vy(x) = J(5)".
We conclude that monotonicity of g is not sufficient for monotonicity of Vj, and that even
in the martingale case u = 0, convexity of g is not sufficient for convexity of Vj.

V}»(x) = ]EX[XT)LE_/STA] = x]E[e_(ﬂ_l’v)T)L] — XHD(T}\ < T'ﬁ_ﬂ) _

Example 2.5. Suppose X is standard Brownian motion absorbed at zero and started above
zero. Suppose g(x) = Iy=o;. Then w(x) = E* [eAHo] = e V2Px on [0, 00).

Suppose 6(x) = x72 on (0,00) and 6(0) = 1. It can be shown that Va(oo)(x) = 0 for
x > 0 and Vg(oo)(O) = ﬁ However, Vy(x) = ﬁe’mx for x > 0 and V4(0) = ﬁ so that
V™ <V, on (0, 00).

We conclude that the sequence (Vg”))nzo does not always yield a limit equal to the value
function Vj. In this example there are an infinite number of events of the inhomogeneous
Poisson process before X hits O and hence Ve(oo)(x) = lim,, Ve(”)(x) = 0 on (0, 00). However, in
calculating Vjy, all these events of the Poisson process can be viewed as suboptimal as candidate
stopping times. Instead the optimal stopping time is T = inf{r € T? : X, = 0}.

3. Problem formulation and first results

3.1. Problem specification

Let the stochastic process X = (X;);>0 be a time-homogeneous, real-valued, regular
diffusion process with initial value X, = x, living on a filtered probability space P =
(02, F,P,F = (F;);>0) which satisfies the usual conditions. Let Z € R denote the state space
of X, and suppose that any endpoints which can be reached in finite time are absorbing and are
included in Z. (See Section 3.4 for further discussion about the behaviour of X at endpoints
of Z.) We will write P* to denote probabilities under the condition that X, = x (although
later when we have multiple processes on the same probability space, we will also denote this
dependence on the initial condition via a superscript on X). We suppose that X solves the SDE

dX, = a(X,)dB, + b(X,)dt )

with initial condition X¢y = x € Z, and that a and b are such that the solution to (9) is unique
in law. The results of Engelbert and Schmidt [10], see Karatzas and Shreve [14, Section 5.5],
show that a sufficient condition is that 1/a® and b/a® are locally integrable.

Let g : 7 — R, be a non-negative (measurable) payoff function and let 8 be a strictly
positive discount factor. In principle our results can be extended to the case of state-dependent
discount factors, but the focus in this paper is on state-dependent arrival rates for stopping
opportunities and we will suppose that the discount factor is constant.
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The value function w of the classical discounted optimal stopping problem is defined as

wx) = sup E[e P g(X,)] (10)
€7 ([0,00))

where 7 (T) is the set of all T-valued stopping times.

Standing Assumption 1. The coefficients of the SDE for X are such that a > 0 and 1/a*
and b/a2 are locally integrable, so that X is unique in law. Further, g > 0 satisfies suitable
growth conditions, so that the problem for w in (10) is well-posed.

Now consider a Poisson optimal stopping problem in which stopping can only occur at the
event times T* = {T}},>, of an independent Poisson process of rate A. (We assume that the
probability space is rich enough to carry a Poisson process which is independent of X, and to
carry any other random variables which we wish to define.) The value function is now given
by

Vi) = sup E[e T g(Xy)] an
TeT(TH)
where T* is the set of event times of a Poisson process rate A. We expect that as A increases
then limy 4o Vi(x) = w(x), at least if g is lower semi-continuous. As we saw in Example 2.1,
in general equality in the limit may fail.
Let H, be the value of the Poisson optimal stopping problem, conditional on there being an
event of the Poisson process at time 0. Then we have

Hi(x) = sup  E'[eg(X0)] = max{g(x), Vi (x)}. (12)
TeT(THU(0))
Further, by conditioning on the first event time of the Poisson process we have the represen-
tation Vy(x) = E* [ [;° dt Ae™e™P H,(X,)]. Substituting (12) into this last equality gives an
expression for V, in feedback form:

oo
Vi(x) = E* [/ dt re M e P max{g(X,), V,\(X,)}} . (13)
0
Based on this identity we expect that V; will solve the ode
LYV —(B+1MV+ArgVvV)=0

where L is the generator of X. Dupuis and Wang [7] discus the solution of (11) and write down
expressions for V, and the continuation region in the case where X is exponential Brownian
motion and g is a call payoff, see Example 2.3. Lempa [17] extends these results to general
diffusions.

Let 6 : 7 — [0, c0) be a measurable function such that, to avoid trivialities, fz O(x)dx > 0.
We consider @ to be the stochastic rate function of a state-dependent Poisson process N =
(N," )r>0 so that, conditional on the path of the diffusion X, the probability that there are no
events of the Poisson process in an interval [s, ¢) is exp(— f[S 5 0(X,)du). Let T? denote the
event times of this Poisson process and let 7(T?) be the set of stopping times constrained to
take values in the event times of N?.

Let Tf be the first event time. We can write {77, Tz(’, e, Tne} for the first n events, but
note that there may be countably infinitely many events in finite time. As a result, we cannot
always write the set of event times as {Tf}nz 1, at least not if we insist on Tie < TJ.9 fori < j.
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We wish to consider the properties of
Go(x) = E[e ™11 g(X9)]
and especially

Vo) = sup E'[e”"Tg(Xo)l.
TeT(TY)
where the arrival rate of the Poisson process is constant and equal to A we write G, instead
of Gg.

3.2. First results

In this section we give some simple proofs of monotonicity and convexity of Gy and Vjp
which can be obtained by extending proofs of monotonicity and convexity for w from the
literature (see [3,5,8,9,11,12,19,21]). In Section 4 we will give stronger results using a different
coupling which is specific to the Poisson optimal stopping problem.

Under Standing Assumption 1 the diffusion X is unique in law, and the optimal stopping
problem corresponding to w is well-posed. Then Vj is finite.

Theorem 3.1. Suppose g and 6 are increasing in x. Then Vy is increasing in x.

Proof. Suppose X solves
dX, =a(X,)dB, + b(X,)dt (14)

Fix x < y. Let X* and X” denote solutions of (14) where the superscript indicates the initial
value e.g. X{j = x. We construct a coupling such that X* < X" pathwise.

Let X* solve d}_(j,‘ = a(}_(s)déj,‘ + b(X,)dt subject to )_(6‘ = x and let X? solve dX! =
a(X3)dB) + b(X3)ds subject to X; = y, where the Brownian motions B* and B’ are
independent. Let o = inf{u : X* = X3}, let )N(;‘ = X7 and let X! = X  ons < o and
X) = )_(;‘ on s > o. Then, by the Strong Markov property and uniqueness in law, X and
X7 are identical in law. Moreover, f(f < )~(§V by construction. This is the Doeblin coupling,
Lindvall [19, Section I1.2]. Tt follows that E[/(X*)] = E[y/(X))] < E[¥(X))] = E[y/(X})]
for any non-negative, increasing function ¢ and any s.

Suppose that 6 is constant (in which case we write A). Then, since g is increasing, for the
coupled processes (X*, X*) and for any T we have e_/ﬁg(f(f) < e‘ﬂfg(f(;v). Moreover, for

T € T(Th),

Ele 7" g(X)] < Ele P g(X)] < sup E[e P g(X})] = Vi(y).
£€T(T*)

Taking a supremum over T € 7 (T*) gives that V,(x) < V,(y) and hence that V, is increasing
in x.

Now we consider the corresponding result for increasing rate functions 6. By the previous
analysis, without loss of generality we may assume that X* < X3 for all s > 0.

Let N7 = (N;);>0 be a Poisson process with stochastic rate function y = (¥;);>0.

There are two natural ways to think of NV = (N} )i>0 and therefore (at least) two natural
ways to couple inhomogeneous Poisson processes with different rates.
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Y

*
*
*

x t

Fig. 1. The left figure shows events of the unit rate Poisson process on Ri. The right figure how those events
become events of a time-inhomogeneous Poisson process on Ry of rate ¢: an event at (x, y) becomes an event at
t=x if y < ¢(x).

First, if N is a unit-rate Poisson counting process, then we can define NV = (N,V),Zo by
N/ =N Tt yds® Then, given a pair of Poisson processes N” and N® we can couple them by
writing N = Nfg srds and Nf = Nfg case I [y vsds = [ &ds for all t then N} > Ny for all ¢.

Second, we can consider NV as the counting process derived from a homogeneous space—
time Poisson process N L in which there is an event of N in [s, #) if and only if there is an
event of N® in {(u,2):s <u <1,z < v.}. See Fig. 1. Here, NB% is a Poisson process in
the first quadrant of the plane for which the number of points in a set A C Ri is a Poisson
random variable with mean the area of A.

We take the second approach. Since 6 is increasing (and we have coupled X* and X” so
that X7 < X; for all ) we have a set inclusion of the event times for the Poisson process with
rate (X} );>0 within the set event times for the Process with rate Q(Xty),zo:

TOX=0 = {4+ (u,z) € N¥+, 2 < O(X5)} C {u s (u, 2) € N®+, 2 < (X))
— TOXizo0_

In particular, any candidate stopping time for the process started at x is also a candidate
stopping time for the process started at y. Then

sup  Ele Pg(XDI<  sup  E[ePTg(X))]
reT (M0 Xiiz0) e iz0)
< sup E[e7To(X))]
-,_—ET(T(H(X?.))IZO)

where the first inequality comes from X* < X and the second from the inclusion 7 (T®X: )r=0)
C T(TCX =0y,

Theorem 3.2.  Suppose X is exponential Brownian motion. Suppose g is convex. Then
A
E*[e P g(X))], G,.(x) = E[ePTi g(XTI,\)] and V,(x) are convex in Xx.

Proof. This result extends a result of Merton [21, Theorem 10] from convexity of w in x to
convexity of V.
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Suppose d X, = o X;d B; + 1 X,dt. Then there is a coupling such that X* has representation
1
X¥ =xZ, where Z, = O B30 g independent of x. Then for x < y and ¢ € (0, 1),

XSy — o(exZ, + (1 = O)yZy) < tg(xZ) + (1 — 0)g(yZy)
=Cg(X)+ (1 —0)g(X)). (15)

It follows that for any stopping time T we have g(X:* "1~ < Cg(XH) + (1 —)g(X7) and
then

E[e PT (X 1=00)] < tEle " g(XD] + (1 — OE[e P g(X)]. (16)

Taking T = T}* we get that G, is convex. Moreover, taking a pair of supremums over t € 7(T*)
on the right-hand-side of (16),

E[e_ﬂrg(ng-Hl_{)y)] <¢V,(x)+ A —=20)V,(y).
Now, taking a supremum over T € 7(T*) on the left-hand-side we obtain V;({x +(1—¢)y) <
Vi) + (1 = Vi(y). O

Remark 3.3. A similar proof applies to the case where X is Brownian motion with drift and
we deduce that if X; = x 4 aB; + bt and g is convex then G, (x) and V,(x) are convex in x.

Theorem 3.4. Suppose X is a martingale diffusion. Suppose g is convex. Then E*[e~P"g(X,)]
and G, (x) are convex in x.

Proof. This result extends Hobson [12, Theorem 3.1] slightly, by including the result that
G, (x) is convex.
For x < y < z define a triple of processes (X, Y, Z) via

dX, = a(X,)dB}, Xo = x,
and similarly dY, = a(Y;)dB; subject to Yo = y and dZ, = a(Z,)dBZdt subject to
Zy = z. (Here we use the more economical notation (X, Y, Z) where normally we might write
(X, X7, X9).)

Couple the processes by making the three driving Brownian motions independent. Let
HY =inf{u : X, =Y,} and H* =influ : Y, = Z,}. Fix t > 0 and let 0 = H* A H>* A t.
Then, by symmetry, on 0 = H,

L L
(Z: — Xp)g(Yy) = (Z; — Y)g(Xy) Yig(Z)) = X:8(Zy)
so that
El(Z, — X)g(YD lio=pr}] = EWZ; —Y)g(X) lio=m=s) 1+ EI(Y; — X1)g(Z) lig=nxry]. (17)

Similarly,

E[(Z, - Xz)g(Yr)I{a:Hw)] =E[(Z, - Yz)g(Xz)I{U:HYZ}]+E[(Yt - Xt)g(Zt)I{a:HN}]' (18)

Finally, on H*Y A H’* > t we have 0 = ¢, X; < Y; < Z; and by convexity of g

(Z, — X)g(Y) i <y amxzy < (Zy — Y1) 8( X ) io <oy amxzy + Yy — X)(Z) (6 < Hxy b2}
Taking expectations, adding the result to (17) and (18), and multiplying by e~ we obtain
El(Z; — X0e P g(Y)] < EI(Z, = Y)e P g(X)1 + E[(Y; — X)e P g(Z))].
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Using the fact that X, ¥ and Z are independent we conclude that
(z = 0E[e "g(Y)] < (z = EL " g(X)] + (v — 0)Ele™ " g(Z))]

and that E[e~#'g(X7)] is convex in x.
Since Gy (x) = fooo Le ME*[e P g(X)]dt the convexity property is also inherited by
G,. O

Remark 3.5. (i) The same proof shows that if g is concave, then G, is concave.

(ii) Similar arguments were used in Bayraktar [2, Lemma 2.3] to prove convexity in x of
E*[e ﬂ’g(X )] in the case where X, = e ‘”X,, where (X )i>0 is a martingale diffusion. The
main focus of Bayraktar [2] is the pricing of American options in a model with level-dependent
volatility and jumps governed by a Poisson process, and one of the goals is to show that
the price of a perpetual American put is convex in the current price of the underlying asset.
Although the setting us quite different, there is some commonality of ideas with this paper, for
example by looking at the value function associated with stopping on or before the time of the
nth event of the Poisson process.

We close this section with two other results which will be useful in later sections.
Proposition 3.6. If Gy < g then V" = v\ = vV = G,.

Proof. Suppose Vg(k) = Gy < g. This is true for k = 1 by hypothesis. Then
_gT6 o _pT?
Vi @) = BV le P TH{g(X o) v Vg (X)) = E[e T g(Xp0)] = Go(x) < g(x)

and the result follows by induction. [

Proposition 3.7. Let Y be a regular martingale diffusion with state space T and let T be
an independent exponential random variable. Suppose c : T — [0, 00) is bounded on compact
sub-intervals of T and is such that E'[c(Y7)] = c(y).

Let C(y) = E¥[c¢(Y7)]. Then C is convex.

Note that convexity of ¢ is a sufficient but not necessary condition for E*[c(Y7)] > c().

Proof. Let {T}, T», ...} be the event times of a Poisson process, let 7o = 0 and let {S; =
Tk — Tr—1}k>1 be the inter-arrival times.
Fix x,y,z € Zwithx <y < z. Let Yy = y and for w € {x, z} define H! = inf{u > 1 :
Y, = w}. We have C(y) = E”[c(Y7,)] and then
C(y) =B [c(Yr) i =mamy] + B [cYr) i, <honryy ] + B [e(Yr) iy <monmy ] -
By the Strong Markov property of Y and the fact that 7} is memoryless we have

E* [c(Yr) s < a1y ] = E [Ey[C(YTl)I{foHz/\Tl}LFHxAHy/\T]]]
= B [E [c(YT) 1, <t a1y )
= Cx)P(H, < H, NTY).
Similarly, EY [c(Yr) s, <t amy | = CQPY(H, < Hy ATY).
Suppose inductively that

C(y) < C()P*(Hy < H. AT+ CPY (H, < He AT +E [e(Yr) i <miamy ] - (19)
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We have shown this is true for k = 1. Let Y7k be given by Y,T" = Y14+ Then,on Ty < H,AH,
and writing S for Sgp,

c(¥y) < E'% [c(Vr, )| Fr]
= E"T I:C(YSTk)I{HxinA(Tk+S)}] +E"% I:C(YSTk)I{HZEHxA(Tk+S)}]

+E" I:C(ng)I{Tk+S<Hx/\HZ}]
= COOP' ™ (H, < H, A (Tx + 8)) + C(2)P"k (H, < H. A (T + S))
RV [C(YSTk)I{Tk+S<HxAHz}] .
It follows that
B [c(Vr)lim<nnmy] = COOP'(Te < He < He A Ti)

+C(Z)Py(Tk < H,<H A Tk+1)
+E [C(YTk+1 )I{Tk+l <Hx/\Hz}] :
Substituting this inequality into (19) we get the equivalent statement for k£ + 1. Hence we know

that (19) holds for all k¥ > 1. Letting k 1 oo, and using the fact that Y is regular and c is
bounded on [x, z] we get

C(y) = C(x)P*(Hy < H.) + C(2)P’(H, < H.).
-y

Then, using the martingale property of ¥ we get C(y) < C(x):= + C(z)7=; and C is
convex. [J

Remark 3.8. The argument extends without change to cover the case where the unit-rate
exponential 7 is replaced by the first event time Tf) of a Poisson process with rate 6 =
{6(Y;)};>0, provided T19 is almost surely finite. An alternative strategy for a proof is to use
the fact that we expect C to solve LYC = 0(C — c), where LY is the generator of Y. Then,
since £ has no first order derivative, if C > ¢ everywhere, then C is convex.

Example 3.9. Let B be Brownian motion. For ¢ > 0 set hg(x) = |x| + ¢ w — |x]|t.
Then hy is symmetric about zero, and piecewise linear with kinks at 0 and +1. Moreover,
hy(0) = ¢ and hy(x) = |x]| for |x| > 1. Note that Ay is convex if and only if ¢ < 1.

Let T; be an exponential of rate A > 0 and let & = V2. Set Hg(x) = E*[hy(Br,)]. Then,
with L?* denoting the local time of B at y by time 7,

Hy(x) = hy(x) + %EX[L%H + %E*[L%*l] + (1= QELE]
B ¢ eféllfxl ¢ 67$\1+x\ e*EM

Then, for x € (—1, 1),

Hy(x) = £*(Hy(x) — hy(x)) = & [pe " cosh(€x) + (1 — p)e*I],
and for |x| > 1,

Hy(x) = £*(Hy(x) — hy(x)) = Ee~*M [p cosh & + (1 — ¢)].

Then H, is convex everywhere if and only if Hy > hy everywhere, if and only if ¢ < #
1

In particular, if 1 < ¢ < ;—— then Hy is convex, even though the payoff function /¢ is not.
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3.3. Reduction of the problem to a problem in natural scale

Recall that our assumption is that X is a regular diffusion with state space Z which solves
the SDE dX, = a(X,)dB; + b(X,)dt. Moreover, Standing Assumption 1 gives that b/a>

locally integrable. Then we can define s : Z — R by s'(x) = exp(— [~ ab((z“))z dz) and if we

set M, = s(X,) then M = (M,);>0 solves dM, = n(M,)d B, where n = (as’) o s~!. The key
point is that M is a (local) martingale. Moreover M is a regular diffusion with state space
Iym = s(Z). The increasing, invertible function s is called the scale function and M is said to
be in natural scale (Rogers and Williams [23, V.46]). Note that s is only determined up to a
linear transformation, so we may choose constants to make 7y, have a convenient form.

Let § = gos ' and = 6 os~'. Then e #7g(X,;) = e #"3(M,) and 6(X,) = 6(M,)
so that the inhomogeneous Poisson process with rate (6(X;));>o can be identified with the
inhomogeneous Poisson process with rate (é(M,)),zo. Finally,

7 =m [ ,—Bt 4 =s"l(m - -
Vom):= sup EM="[ePTa(M,)] = sup EX0= [ Fro(X,)] = Vio(s™' (m))
reT(T9) TeT(TY)

so that V; = Vy o5~

Since s~! is increasing we conclude that proving that Vj is increasing is equivalent to
proving that \7@ is increasing. Hence we may restrict attention to diffusions in natural scale.
The idea of transforming time-homogeneous optimal stopping problems via a change of scale
is fairly common in the probabilistic optimal stopping literature. One of the most powerful
examples is the work of Dayanik and Karatzas [6] who give a complete and intuitive analysis
of a class of optimal stopping problems using change of scale type arguments.

When we turn to problems concerning convexity, then, recall Example 2.2, we only expect
general convexity results for Vp in cases where the diffusion X is already in natural scale.

3.4. Boundary behaviour

Suppose M is a regular diffusion in natural scale with state space Z); with endpoints ¢ and
7 with £ < 7. Suppose M solves dM; = n(M,)d B, where 1/n? is locally integrable.

Suppose ¢ € {€, 7} is finite. If M can reach é in finite time then we say e is accessible (see
Rogers and Williams [23, Section V.47] or Revuz and Yor [22, Section VII.3] for terminology).
If ¢ is accessible then we assume that M is absorbed at €. The necessary and sufﬁcient condition
that ¢ can be reached in finite time is 1,(¢) < oo where I,(é) = [;|m —é ( )2 Otherwise, if

I,(é) = oo, then é cannot be reached in finite time and we say é is a natural boundary. If é is
a finite, accessible endpoint then ¢ € Zy,; otherwise, if ¢ is natural then é ¢ Z,.

Now suppose ¢ € {é, 7} is infinite. If, for y € (,#) we have lim,_, P*(Hy, < o0) > 0
(or equivalently lim,_; E¥[e”7"*] > 0 for each y > 0) then é is an entrance boundary. The
condition that ¢ is an entrance boundary is J,(€) < oo where J,(é) = Otherwise e

P 2
is a natural boundary and ¢ ¢ Z,. It is not possible for M to explode to an (1n)ﬁn1te boundary
point in finite time.

Suppose X solving (14) is a time-homogeneous regular diffusion, not in natural scale, on
a state space Z with endpoints £ and r. We classify the boundary points of X by using the
classification of the corresponding boundary points for M = s(X). In particular, for e € {£, r},

if |s(e)| < oo and f =@l 7y < o0 then e can be reached in finite time, and we take e to
s (x)a(x)?

be absorbing. If |s(e)| < co and |, B0l gy — 00 or if |s(e)] = oo and [

5 (ate)? e Tmanpdx < o0
then e is natural.
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Standing Assumption 2. Boundary points are either natural, or if they can be reached in
finite time, they are absorbing.

4. Monotonicity and convexity of Vo(°°)

Consider the solution Vg(") of the Poisson optimal stopping problem, under the restriction
that stopping must occur at one of the first n events of the Poisson process N’. We have

VP (x) = sup E* [e P g(Xy)]. (20)
T 7Y .. T

Set V() = 0. Then V" = Gy and V" (x) = B [ 71 max g0 ), V" "X} .

Lange et al. [16] con51der a multidimensional version of the Poisson optimal stopping
problem (with constant stopping rate) and consider the sequence {V,\(") }n>0. They observe that
V(") is increasing in n and show, under an assumption that a certain iterated expectation is
finite, that V(") converges to V( A geometrically fast. We work in one-dimension but
allow for stopping opportunities arising from a state-dependent Poisson process.

Since Vg(") is increasing in n there must exist a limit which is finite on Z since Ve(") < w.
Moreover, by monotone convergence

V) (x) = lim E* [e—ﬂTf {g Xgg) v V" Xy )”

— [e*ﬂTf { §(Xp) Vv V9(°°)(XT19)}] . 1)

In this section we are interested in the shape of the value function V(OO) We saw some
preliminary results in this direction in Section 3.2. In Theorem 3.1 we saw that if both g and 6
are increasing then so is Vp; in Theorem 3.4 we saw that if g is convex and the arrival rate of
the Poisson process is constant then G, is convex. In section we argue that it is not the shape of
g which is crucial, but rather the monotonicity/convexity properties of ¥ where ¥ : 7 — R,
is given by
8(x)f(x)

B+0(x)

In particular, if ¥ and 6 are increasing then Gy (Corollary 4.3) and Vg(oo) (Theorem 4.5) are
increasing, and if ¥ is convex then V(°°) is convex (Theorem 4.8). (In the next section we give
conditions under which Vfo) = Vp, and then monotonicity and convexity of Vj are inherited
from Vg(oo).) Since g increasing and 6 increasing implies ¥ is increasing, and g convex and
6 constant implies ¥ is convex, the results of this and the next section include the results of
Section 3.2 as special cases, albeit under slightly stronger assumptions.

Ux) =

Lemma 4.1. Suppose (0/a?) is locally integrable, and further that if an endpoint e € (£, r}

is attainable, then fe G(x)l‘f,(:);fgg‘dx < 00 and 9(e) € [0, 00).

Then fot 0(X,,)du does not explode and T? 1 oo almost surely.

Proof. Fix c in the interior of Z and define s(x) = [ dy exp( J ub((z))z ) Then s is a

scale function for X and M = s(X) is a local martingale with dM, = n(Mt)dB, where
n() = (s’a) o s7'(-). Let W be a Brownian motion started at s(xg), let H = HY
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inf{u : W, ¢ (s(£), s(r))} and define ¢, = O" n(Ws)~2ds on u < H with &, =coonu > H.
Then, by the Occupation Times Formula (Revuz and Yor [22, VI.1.6]), for u < H we have

1 1
@, =/ SLY Y dw = / ——— L, Wdx
@ n(w) 7 8" (x)a(x)

where L"* is the local time of W at w by time s. Necessarily @ is strictly increasing and
increases to infinity.

Let A be inverse to @ and let M, = Wy,. Then A does not explode in finite time and M
solves dM; = n(M,)dB; for some Brownian motion B. Finally, let X = s~!(M). Then X
solves (14) with X = s~ '(Mp) = s~ (Wp) = xo.

Now, with this set-up, for t < H;, = inf{t : X, ¢ (¢, )} (note that Hf} ) = Apx),

t t ] —1
/ O(X,,)du:/ eosfl(WAu)dMZ/ ng) LY " dw
0 0 s n(w) !

— /r e(x) Ws(x)d (22)
14

s'(x)a(x)? La

and for t > HYX ,

t r
/ 0(X.)du =/ 6x) e dx 00l — HXTY H 0l — HYTT.(23)
0 §'(x)a(x)? " Hyleys
In particular, if both boundaries are natural, then using the fact that s’ is bounded on compact
subsets of (£, r) and 6/a? is locally integrable we conclude from (22) that fot 0(X,)du is finite
almost surely for each 7. If one or more boundaries of Z are accessible (say £) then the same
conclusion follows from the fact that for xo > ¢, EWo=sGo W5 1 - ]EWO_*(XO)[LW S0 ] =
s(£),s(r) V(() 0

=x 0(x) W,s(x) 6(x)
2[(s(x) A s(x)) — s(£)] and hence EX0=% |: ¢ v Ly dx } < 2/, T S =
s(€)dx < oo.

5().5(r)
Let I" be random, and let N be a Poisson process which is independent of I'. It is easily seen
that N < 0o almost surely if and only if I" < 0o almost surely. It follows that Nt )4, < 00

for each ¢ almost surely and equivalently (7),> increases to infinity almost surely. [

In addition to Standing Assumptions 1 and 2, for the rest of the paper we assume

Standing Assumption 3. (0/a?) is locally integrable. If an endpoint e € {£, r} is attainable,
then |, e(x)'i(&)) gf;'dx < 00 and 0(e) € [0, 00).

For h : Z — R, define ¥, : Z+— R, by ¥,(x) = }gi)g((x)) Then ¥ = ¥,.

Lemma 4.2. Let Y solve
a(Yy) b(Yy)
dYy = ————=dW; + ——————ds
VB T BHOY)
with initial condition Yy = x. Then
E* e h(X79)) = B[ 93(Y)] 24)
where T is a unit-rate exponential random variable which is independent of Y.
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Proof. Let C = (C,);>0 be given by C, = fot (B + 0(X7))ds. Then by the local integrability
assumption on 6/a’ of Standing Assumption 3 we have that C increases to infinity, but does
not explode in finite time.

Let A be inverse to C. Our assumptions give us that A, < oo for all finite u. Let Y be given

by Y; = X4,. Then % =3 +0(1XA“ 3 +0(y) Moreover Y is a time-homogeneous diffusion
solving the SDE
Y, - b(¥,
Y, = dX s, = a(Xa)dBa, +b(X s )dd, = —2F) g5 4 PTD,0 o5

VBT, T B+0Y)

where B is a Brownian motion given by B, = [; (’MJ) 12 dB,,. Note that since (8 + 6)/a>
is locally integrable, Y is unique in law.

Conversely, given Y solving dY; = ;J(rg‘()md B+ ﬁi(gy(f; )dr we can define 4, = fo FE ) +0(Yu)’
C=A"and X, = Yc,. Then dX; = a(X)dW, + b(X;)ds.

Conditioning on the first event of the Poisson process we have that

E* [e—ﬂTfh(leg)]zEx / 0(X)e S h(X,)dt
0

= EF / Q(XAu)e_uh(XAu)d/lu}
0

_ /we_uwdu' —E [/we_" !P;,(Yu)du}
o B+ 0

= B [¥,(Yp)]. O

Corollary 4.3. Suppose VU is increasing. Then Gy is increasing in x.

Proof. Fix x < y. Let Y* and Y” denote solutions of (25) started at x and y respectively.
Since Y* and Y” are diffusions which are unique in law, there exists a coupling such that
Y* < Y7 pathwise (recall Theorem 3.1). In particular, there is a coupling such that Y is
increasing in its initial value on each sample path, and it follows that for x < y and any
increasing ¥, ¥ (Yy) < ¥(¥;). Then applying Lemma 4.2 with h = g and ¥, = ¥,
Go(x) = E[¥(Y})] < E[¥(Y))] = Go(y). O

Example 4.4. Let X be a diffusion in natural scale on [0, 0co) or (0, 00). Let g(x) = 1 + x
and suppose 0(x) = B/(1 + 2x), with 6(0) = B if 0 is attainable. Then ¥ = 1/2 and hence
Go(x) = 5 < g. Furthermore applying Proposition 3.6 we conclude that 7 = Tf’ is optimal
and V(oo) Gy =

Theorem 4.5. Suppose 6 and ¥ are increasing. Then Vg(oo) is increasing.

Proof. By Lemma 4.2
n _gr? n
v (x) = B [e AT (g v V! ))(ng)] = B[, 0 (¥7)] (26)

EWMVv(O) _ vy
g = YOV G-

If Vg(”) is increasing, then since 6 and ¥ are also increasing, ngvw is increasing. Then,
(n+1)
Vo

where Yo, (y) =

using (26) and a coupling argument as in the proof of Theorem 3.1, is increasing.
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Hence, since by Corollary 4.3 we have VH(D = Gy is increasing, we have by induction that
&) . - . . . .. . . . .. .

V,"" is increasing for each k. The increasing limit of increasing functions is increasing. Hence

V™ is increasing. [J

Now we turn to the issue of convexity. Since we do not expect convexity unless X is in
natural scale, for the rest of this section we suppose that X is in natural scale. Note that in
the results that follow there are assumptions on ¥, but unlike Corollary 4.3 and Theorem 4.5,
there are no separate assumptions on 6.

Proposition 4.6.  Suppose that X is in natural scale. Suppose that if £ = —oo then
/o %d = oo and if r = 400 then [~ Y('Z(ﬁig‘”d = 00. There is no condition
at finite endpomts.

Suppose VU is convex. Then Gy is convex in x and Gy > V.

Alternatively, if VU is concave then Gy is concave and Gy < V.

Proof. By a result of Kotani [15] the conditions at the boundaries are exactly sufficient to

guarantee that ¥ given by dY; =dX,, = Jgfr—%d Bsisa rnartlngale The result then follows

from the representation in (24) and Theorem 3.4 (or Remark 3.5 in the case of concavity) with
=0 04

Remark 4.7. The martingale property is essential here, and it is easy to construct a
counterexample in the strict local martingale case using a linear payoff and a three-dimensional
Bessel process.

Theorem 4.8. Suppose that X is in natural scale. Suppose that if { = —oo then
. Wdy = oo and similarly if r = 400 then [ %dy = oo. There is no
condition at finite endpoints.

Suppose V¥ is convex. Then V, ( ) is convex.

Suppose V¥ is concave. Then Vo( ) is concave.

Proof. Suppose the conditions of the theorem hold and ¥ is convex. By Proposition 4.6,
v =Gy > .
Suppose inductively that V' > V" " > ... > v{" = G, > w.
Consider V,"""(y). By (26) we have v<"+”(y) E'[¥,,,m(YD)]. Since v = v e
6
g n g w _ V0w
follows that V(H'l) > Vo( ) Z(-;- > Ve(l) = Gy > ¥(y). Moreover, VG(H'I) > Vo( ) > %
v, n ,
Frg = Ypy- Thus, V"V 0) = B, o (VD] 2 & ().

and by Proposition 3.7 with ¢ = ¥ VV(n) we conclude that V(,("’Ll)

In particular, V""" > v v

is convex.

Finally, since the increasing limit of convex functions is convex we conclude that V(oo)

convex.

The corresponding result for concavity is more direct: if ¥ is concave then Gy < ¥ =
ﬁg—fe < g. Then Vg(") = Ve(l) = Gy and Ve(oo) = Gy. Since Gy is concave by Proposition 4.6,
he result follows. [

5. Monotonicity and convexity of Vj
Standing Assumptions 1-3 remain in force.
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Proposition 5.1. Suppose

E [sup {e’gsg(Xs)}i| < o0 and limE [sup {eﬂfg(xs)}] =0. (27)

5>0 oo | s>t
Then Vy(x) = V().
Remark 5.2. From the discussion at the end of Example 2.3 we know that (27) holds in that

setting, and clearly it also holds whenever g is bounded. Indeed it holds for all the examples
in Section 2.

Proof. Let K = E[sup,.,{eg(X,)}]. Given € > 0, choose 7y such that E [sup,.,
{e’ﬁs g(XS)}] < €/2, and, recalling that by Lemma 4.1 we have that Tne 1 oo almost surely,

choose ng such that P(7,7 < 1) < 5%.

Then, for any stopping time 7 € 7 (Ty) and n > ny,

E* |:I{t>T,f}e_ﬁTg(Xr)] = E* |:I[r>T,?>tO]e_ﬂTg(Xr)] +E* I:I{r>T,f}I{zozﬂf}eiﬁrg(xr)]

< B [Irarge P e(X )] + E* [I{roﬂn‘*} up {e—f“g(xs)}]

E* [sup {e‘“g(xa}} +PN(T, < 1)E [sup {eﬂfgm)}}

=
s210 s>0
€ + € K
< = — = €.
2 2K

It follows that

sup E* [e’ﬂfg(Xt)] = sup {Ex [e’ﬂfg(X,)I{fan;] + E* [e’ﬂ’g(Xf)I{DTn}]}
€T (Ty) €T (Ty)

sup E* [e 7 g(X:)] + €
teT(T{ T )

IA

= Vo(n)(.x) + €

Hence, for large enough n, Vg(")(x) < Vy(x) < VO(")(x) + €. Taking limits we find Vy =
v O

Combining Proposition 5.1 and Theorem 4.5 we obtain:

Corollary 5.3. Suppose 0 and ¥ are increasing and that (27) holds. Then Vj is increasing.

Combining Theorem 4.8 and Proposition 5.1 we obtain the corresponding result for Vj:

Corollary 5.4.  Suppose that X is in natural scale. Suppose that if £ = —oo then
. %dy = oo and similarly if r = 400 then [~ %dy = oo. There is no

condition at finite endpoints. Suppose that (27) holds.
Suppose U is convex. Then Vy is convex.
Suppose ¥ is concave. Then Vy is concave.
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