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Abstract

In a classical problem for the stopping of a diffusion process (X t )t≥0, where the goal is to maximise
he expected discounted value of a function of the stopped process Ex [e−βτ g(Xτ )], maximisation takes

place over all stopping times τ . In a Poisson optimal stopping problem, stopping is restricted to event
times of an independent Poisson process. In this article we consider whether the resulting value function
Vθ (x) = supτ∈T (Tθ ) E

x [e−βτ g(Xτ )] (where the supremum is taken over stopping times taking values in
the event times of an inhomogeneous Poisson process with rate θ = (θ (X t ))t≥0) inherits monotonicity
nd convexity properties from g. It turns out that monotonicity (respectively convexity) of Vθ in x
epends on the monotonicity (respectively convexity) of the quantity θ (x)g(x)

θ (x)+β rather than g. Our main
technique is stochastic coupling.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

In a classical optimal stopping problem the objective is to maximise the expected dis-
ounted payoff, where the payoff is a function of some underlying process, typically a
ime-homogeneous diffusion, and the maximisation takes places over all stopping times. In

Poisson optimal stopping problem (Dupuis and Wang [7], Lempa [17], Lange et al. [16]
the terminology was introduced by [16]) the set of potential stopping times is restricted

o be the set of event times of an independent Poisson process. The idea behind introducing
he Poisson optimal stopping problem is that in many applications (for example, the optimal
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time to sell a financial asset) there are restrictions on when stopping can occur (for example,
liquidity restrictions may mean that buyers are not always available). If the underlying process
to be stopped is Markovian, then it is very convenient (and also often realistic) to model the
set of candidate opportunities to stop as the event times of a (not-necessarily homogeneous)
Poisson process, as this will preserve the Markov property. In this article we want to consider
the properties of the solution to the Poisson optimal stopping problem, where we allow the rate
of the Poisson process to depend on the underlying diffusion. Rather than studying a specific
problem, we study a general class of problems, and look for general features of the value
function.

Let X be a diffusion process, g a non-negative payoff function and β an impatience factor.
The classical optimal stopping problem is to find

w(x) = sup
τ∈T ([0,∞))

Ex [e−βτ g(Xτ )], (1)

here T (T) is the set of all stopping times taking values in T, and in this case T = [0,∞).
he Poisson optimal stopping problem, introduced by Dupuis and Wang [7] in the case where

X is exponential Brownian motion and extended to general diffusion processes by Lempa [17],
s to find

Vλ(x) = sup
τ∈T (Tλ)

Ex [e−βτ g(Xτ )] (2)

here Tλ is the set of event times of a Poisson process with rate λ.
The Poisson optimal stopping problem has been extended in many ways and to many

ettings, for example to allow for regime switching (Liang and Wei [18]), non-exponential
nter-arrival times (Menaldi and Robin [20]) and running costs and multi-dimensions (Lange
t al. [16]). A related work in which actions are constrained to occur only at event times of a
oisson process is Rogers and Zane [24] who model portfolio optimisation.

Hobson and Zeng [13] consider an extension of (2) in which the agent can choose the
ate of the Poisson process (dynamically) subject to a cost which depends on the chosen rate.

otivated by this example, in this paper we consider the extension of (2) to a state-dependent,
nhomogeneous Poisson process and the problem of finding

Vθ (x) = sup
τ∈T (Tθ )

Ex [e−βτ g(Xτ )] (3)

here Tθ is the set of event times of a time-inhomogeneous Poisson process with rate θ (X t )
t time t . (We will use the symbol λ in the case of a constant-rate Poisson process, and θ in
he case of a state-dependent Poisson process, but essentially the only purpose of a different
otation is to allow us to highlight the results in the constant rate case.)

One approach to solving (3) (and also (2)) is to use the Bellman-type representation

Vθ (x) = Ex [e−βT θ1 max{g(XT θ1
), Vθ (XT θ1

)}] (4)

here T θ
1 is the first event time of the Poisson process with rate θ = {θ (X t )}t≥0. This

epresentation is based on the fact that at the first event time of the Poisson process the agent
hooses between stopping and continuing. Solving (4), even numerically, may be challenging
s the unknown Vθ appears on both sides. One strategy, as described in Lange et al. [16] is as
ollows. Let V (n)

θ denote the value function under the restriction that stopping is constrained
o lie in the first n events of the Poisson process. If we set V (0)

θ = 0 then the family (V (n)
θ )n≥1

olves

V (n)(x) = Ex [e−βT θ1 max{g(X θ ), V (n−1)(X θ )}]. (5)
θ T1 θ T1
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Since V (1)
θ ≥ 0 = V (0)

θ it is easy to see that V (n)
θ is increasing in n (this is also clear from the

efinition) and therefore V (∞)
θ defined by V (∞)

θ (x) = limn↑∞ V (n)
θ (x) exists. Moreover, since

e expect that V (∞)
θ = Vθ we have found our solution.

In this article we are concerned with the monotonicity and convexity in x of Vθ (x). A
econdary goal is to understand the relationship between V (∞)

θ and Vθ . We give a simple
sufficient condition for equality, but also an example to show that they are not always equal.

Temporarily, instead of an optimal stopping problem, consider a fixed-horizon problem:
(x) = Ex [e−βκg(Xκ )] where κ is a constant time. Suppose g is increasing: a simple Doeblin

coupling argument (see Lindvall [19, p24], Bergmann et al. [3], Henderson et al. [11]) gives
that U is also increasing. Further, if X is exponential Brownian motion and g is convex then
w is convex (Cox and Ross [5]). Subject to the condition that X is a martingale, this convexity
result has been extended to general time-homogeneous diffusions by El Karoui et al. [9] using
stochastic flows, Bergman et al. [3] using pdes and Hobson [12] using coupling.

Now return to the classical optimal stopping problem (1). Again, a simple coupling argument
gives that if g is increasing then so is w. Merton [21, Theorem 10] shows that if g is convex
and X is exponential Brownian motion then w is convex. Hobson [12], see also Ekstrøm [8],
gives a coupling argument to show that if X is a martingale diffusion and g is convex then w
s convex. If we look for results which apply simultaneously across all diffusions then this is
he best we can hope for (see Example 2.2) although in the non-martingale case Alvarez [1]
ives sufficient conditions for convexity which combine the payoff and the minimal decreasing
-excessive function of a given diffusion.

The first goal of this paper is to consider similar issues for Vθ . If g is increasing in x , does
Vθ inherit this monotonicity property? If g is convex, does Vθ inherit convexity? We give an
xample to show that monotonicity of g is not sufficient for monotonicity of Vθ , and convexity
f g is not sufficient for convexity of Vθ , even when X is a martingale diffusion.

Our first results are that if g and θ are both increasing, then Vθ is increasing, and if g is
onvex (and X is a martingale) then Vλ is convex. We give simple coupling proofs of these
tatements. Our main result is more refined, and includes the above results as special cases:
ubject to regularity conditions, if θ and gθ

β+θ
are increasing then Vθ is increasing, and if gθ

β+θ

s convex (and X is a martingale) then Vθ is convex. Again, our proofs depend on coupling
rguments. Our main technique is to show that there is a time-change Λ = (Λs)s≥0 such that
f Y = (Ys)s≥0 is given by Ys = XΛs then

Ex
[
e−βT θ1 g(XT θ1

)
]

= Ex
[

g(YT )θ (YT )
β + θ (YT )

]
(6)

here T is an independent unit-rate exponential random variable. We use this representation to
how that if Ψ :=

θg
β+θ

has monotonicity (respectively convexity) properties in x then so does

Gθ (x) := Ex
[
e−βT θ1 g(XT θ1

)
]

(for convexity in x we need that X is a martingale). Then we

deduce corresponding properties for V (∞)
θ . The key role of the shape of Ψ is apparent from (6).

The second goal of the paper is to consider the relationship between Vθ and V (∞)
θ . Clearly

V (∞)
θ ≤ Vθ . We show by example that the equality may be strict. However, subject to a growth

condition on g and the condition that the time of the nth event of the Poison process increases
to infinity, there is equality and V (n)

θ approaches V (∞)
θ = Vθ .

The paper is structured as follows. The next section contains some simple, stylised examples,
or rather counterexamples, which show in part that the questions we consider are interesting.
Section 3 gives a precise formulation of the problem, gives some first results, and explains
231
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how to change the problem for a general one-dimensional diffusion to a problem involving a
diffusion in natural scale. Section 4 discusses the monotonicity and convexity of V (∞)

θ . Finally,
ection 5 compares V (∞)

θ to Vθ and gives conditions such that V (∞)
θ = Vθ , and hence deduces

onotonicity and convexity results for Vθ .

. Examples and counterexamples

xample 2.1. We might expect limλ↑∞ Vλ(x) = w(x), but this is not always the case.
Let X be Brownian motion on R and let g(x) = I{x∈Q}. Then w(x) = 1 > Vλ(x) = 0.
We conclude that we expect to need some conditions on g in order to get reasonable results.

Example 2.2. Let X be Brownian motion with positive unit drift on [0,∞), absorbed at zero.
et Hz denote the first hitting time by X of z. Let g(x) = x and let y = argmax{

zez

sinh(z
√

1+2β) }.
f X0 = x and d X t = d Bt + dt then for 0 < x ≤ y,

w(x) = Ex [e−β(H0∧Hy ) X H0∧Hy ] = y
e(y−x) sinh(x

√
1 + 2β)

sinh(y
√

1 + 2β)
(7)

ith w(x) = x for x ≥ y (see Borodin and Salminen [4, 3.0.5(b)] for the second equality in
7)). It follows that w is neither convex nor concave.

We conclude that unless X is a martingale there is no reason to expect that convex g leads
o convex w, and a fortiori that convex g leads to convex Vλ or Vθ .

For the next example, and for use in other examples later in the article, for ζ > 0 let α+

ζ

respectively α−

ζ ) be the positive (respectively negative) root of Qζ (α) = 0 where

Qζ (α) =
σ 2

2
α(α − 1) + µα − ζ.

ote that if ζ > µ then α+

ζ > 1.

xample 2.3 (Dupuis and Wang). Suppose X is exponential Brownian motion, with drift µ < β

nd volatility σ > 0. Suppose g(x) = (x − K )+ and consider stopping times which are
onstrained to lie in the set of events times of a time-homogeneous Poisson process with rate λ.

Let L = K (1 +
λ

(β+λ)α+

β −βα−

β+λ−λ
). Then the optimal stopping time is τ = inf{u ∈ Tλ : Xu ≥

L} and

Vλ(x) =

{
(L − K )

( x
L

)α+

β 0 < x ≤ L
β

β+λ
(L − K )

( x
L

)α−

β+λ +
λ(x−K )
β+λ

x > L .

In this example Vλ(x) > g(x) on (0, L) and Vλ(x) < g(x) on (L ,∞). Note that as λ ↑ ∞,

L ↑ M = K (
1+α+

β

α+

β

) and Vλ(x) ↑ w(x) where

w(x) =

{
(M − K )

( x
M

)α+

β 0 < x ≤ M
(x − K ) x > M.

(8)

For future reference, note that in this canonical example

Ex
[

sup
s≥t

e−βs g(Xs)
]

≤ Ex
[

sup
s≥t

e−βs Xs

]
= x

e−(β−µ)tσ 2

2(β − µ)
t↑∞

−→ 0.
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Example 2.4. Suppose g(x) = x and suppose X is exponential Brownian motion started
t x > 0, with volatility σ and drift µ with µ < β. Then w(x) = x (it is always optimal

to stop immediately) and Vλ(x) = ρx where ρ =
λ

λ+β−µ
∈ (0, 1). To see this note that it is

lways optimal to stop at the first event of the Poisson process and then with T γ denoting an
xponential random variable with rate γ

Vλ(x) = Ex [XT λe−βT λ ] = xE[e−(β−µ)T λ ] = xP(T λ < T β−µ) =
λ

λ+ β − µ
x .

Now suppose θ (x) = ∞ for x ≤ J and θ (x) = 0 for x > J . Then, for 0 < x ≤ J ,
Vθ (x) = x . For x > J , Vθ (x) = Ex [Je−βHJ ]. In particular, Vθ (x) = J ( x

J )α
−

β .
We conclude that monotonicity of g is not sufficient for monotonicity of Vθ , and that even

n the martingale case µ = 0, convexity of g is not sufficient for convexity of Vθ .

xample 2.5. Suppose X is standard Brownian motion absorbed at zero and started above
ero. Suppose g(x) = I{x=0}. Then w(x) = Ex [e−βH0 ] = e−

√
2βx on [0,∞).

Suppose θ (x) = x−2 on (0,∞) and θ (0) = 1. It can be shown that V (∞)
θ (x) = 0 for

x > 0 and V (∞)
θ (0) =

1
1+β

. However, Vθ (x) =
1

1+β
e−

√
2βx for x > 0 and Vθ (0) =

1
1+β

so that
V (∞)
θ < Vθ on (0,∞).

We conclude that the sequence (V (n)
θ )n≥0 does not always yield a limit equal to the value

unction Vθ . In this example there are an infinite number of events of the inhomogeneous
oisson process before X hits 0 and hence V (∞)

θ (x) = limn V (n)
θ (x) = 0 on (0,∞). However, in

calculating Vθ , all these events of the Poisson process can be viewed as suboptimal as candidate
stopping times. Instead the optimal stopping time is τ = inf{t ∈ Tθ : X t = 0}.

. Problem formulation and first results

.1. Problem specification

Let the stochastic process X = (X t )t≥0 be a time-homogeneous, real-valued, regular
iffusion process with initial value X0 = x , living on a filtered probability space P =

Ω ,F ,P,F = (Ft )t≥0) which satisfies the usual conditions. Let I ⊆ R denote the state space
of X , and suppose that any endpoints which can be reached in finite time are absorbing and are
included in I. (See Section 3.4 for further discussion about the behaviour of X at endpoints
of I.) We will write Px to denote probabilities under the condition that X0 = x (although
ater when we have multiple processes on the same probability space, we will also denote this
ependence on the initial condition via a superscript on X ). We suppose that X solves the SDE

d X t = a(X t )d Bt + b(X t )dt (9)

with initial condition X0 = x ∈ I, and that a and b are such that the solution to (9) is unique
in law. The results of Engelbert and Schmidt [10], see Karatzas and Shreve [14, Section 5.5],
show that a sufficient condition is that 1/a2 and b/a2 are locally integrable.

Let g : I ↦→ R+ be a non-negative (measurable) payoff function and let β be a strictly
positive discount factor. In principle our results can be extended to the case of state-dependent
discount factors, but the focus in this paper is on state-dependent arrival rates for stopping
opportunities and we will suppose that the discount factor is constant.
233
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The value function w of the classical discounted optimal stopping problem is defined as

w(x) = sup
τ∈T ([0,∞))

Ex [e−βτ g(Xτ )] (10)

here T (T) is the set of all T-valued stopping times.

tanding Assumption 1. The coefficients of the SDE for X are such that a > 0 and 1/a2

nd b/a2 are locally integrable, so that X is unique in law. Further, g ≥ 0 satisfies suitable
rowth conditions, so that the problem for w in (10) is well-posed.

Now consider a Poisson optimal stopping problem in which stopping can only occur at the
vent times Tλ = {T λ

n }n≥1 of an independent Poisson process of rate λ. (We assume that the
robability space is rich enough to carry a Poisson process which is independent of X , and to
arry any other random variables which we wish to define.) The value function is now given
y

Vλ(x) = sup
τ∈T (Tλ)

Ex [e−βτ g(Xτ )] (11)

here Tλ is the set of event times of a Poisson process rate λ. We expect that as λ increases
hen limλ↑∞ Vλ(x) = w(x), at least if g is lower semi-continuous. As we saw in Example 2.1,
n general equality in the limit may fail.

Let Hλ be the value of the Poisson optimal stopping problem, conditional on there being an
vent of the Poisson process at time 0. Then we have

Hλ(x) = sup
τ∈T (Tλ∪{0})

Ex [e−βτ g(Xτ )] = max{g(x), Vλ(x)}. (12)

urther, by conditioning on the first event time of the Poisson process we have the represen-
ation Vλ(x) = Ex

[∫
∞

0 dt λe−λt e−βt Hλ(X t )
]
. Substituting (12) into this last equality gives an

xpression for Vλ in feedback form:

Vλ(x) = Ex
[∫

∞

0
dt λe−λt e−βt max{g(X t ), Vλ(X t )}

]
. (13)

ased on this identity we expect that Vλ will solve the ode

LV − (β + λ)V + λ(g ∨ V ) = 0

here L is the generator of X . Dupuis and Wang [7] discus the solution of (11) and write down
xpressions for Vλ and the continuation region in the case where X is exponential Brownian
otion and g is a call payoff, see Example 2.3. Lempa [17] extends these results to general

iffusions.
Let θ : I ↦→ [0,∞) be a measurable function such that, to avoid trivialities,

∫
I θ (x)dx > 0.

e consider θ to be the stochastic rate function of a state-dependent Poisson process N θ
=

N θ
t )t≥0 so that, conditional on the path of the diffusion X , the probability that there are no

vents of the Poisson process in an interval [s, t) is exp(−
∫

[s,t) θ (Xu)du). Let Tθ denote the
vent times of this Poisson process and let T (Tθ ) be the set of stopping times constrained to
ake values in the event times of N θ .

Let T θ
1 be the first event time. We can write {T θ

1 , T θ
2 , . . . , T θ

n } for the first n events, but
ote that there may be countably infinitely many events in finite time. As a result, we cannot
lways write the set of event times as {T θ

} , at least not if we insist on T θ < T θ for i < j .
n n≥1 i j

234
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We wish to consider the properties of

Gθ (x) = Ex [e−βT θ1 g(XT θ1
)]

nd especially

Vθ (x) = sup
τ∈T (Tθ )

Ex [e−βτ g(Xτ )].

here the arrival rate of the Poisson process is constant and equal to λ we write Gλ instead
f Gθ .

.2. First results

In this section we give some simple proofs of monotonicity and convexity of Gθ and Vθ
hich can be obtained by extending proofs of monotonicity and convexity for w from the

iterature (see [3,5,8,9,11,12,19,21]). In Section 4 we will give stronger results using a different
oupling which is specific to the Poisson optimal stopping problem.

Under Standing Assumption 1 the diffusion X is unique in law, and the optimal stopping
roblem corresponding to w is well-posed. Then Vθ is finite.

heorem 3.1. Suppose g and θ are increasing in x. Then Vθ is increasing in x.

roof. Suppose X solves

d X t = a(X t )d Bt + b(X t )dt (14)

ix x < y. Let X x and X y denote solutions of (14) where the superscript indicates the initial
alue e.g. X x

0 = x . We construct a coupling such that X x
≤ X y pathwise.

Let X̄ x solve d X̄ x
s = a(X̄s)d B̄x

s + b(X̄s)dt subject to X̄ x
0 = x and let X̄ y solve d X̄ y

s =

(X̄ y
s )d B̄ y

s + b(X̄ y
s )ds subject to X̄ y

0 = y, where the Brownian motions B̄x and B̄ y are
ndependent. Let σ = inf{u : X̄ x

u = X̄ y
u }, let X̃ x

s = X̄ x
s and let X̃ y

s = X̄ y
s on s ≤ σ and

X̃ y
s = X̄ x

s on s > σ . Then, by the Strong Markov property and uniqueness in law, X̄ y and
X̃ y are identical in law. Moreover, X̃ x

s ≤ X̃ y
s by construction. This is the Doeblin coupling,

indvall [19, Section II.2]. It follows that E[ψ(X̄ x
s )] = E[ψ(X̃ x

s )] ≤ E[ψ(X̃ y
s )] = E[ψ(X̄ y

s )]
or any non-negative, increasing function ψ and any s.

Suppose that θ is constant (in which case we write λ). Then, since g is increasing, for the
oupled processes (X̃ x , X̃ y) and for any τ we have e−βτ g(X̃ x

τ ) < e−βτ g(X̃ y
τ ). Moreover, for

∈ T (Tλ),

E[e−βτ g(X̃ x
τ )] ≤ E[e−βτ g(X̃ y

τ )] ≤ sup
ξ∈T (Tλ)

E[e−βξg(X̃ y
ξ )] = Vλ(y).

aking a supremum over τ ∈ T (Tλ) gives that Vλ(x) ≤ Vλ(y) and hence that Vλ is increasing
n x .

Now we consider the corresponding result for increasing rate functions θ . By the previous
nalysis, without loss of generality we may assume that X x

s ≤ X y
s for all s ≥ 0.

Let N γ
= (N γ

t )t≥0 be a Poisson process with stochastic rate function γ = (γt )t≥0.
There are two natural ways to think of N γ

= (N γ
t )t≥0 and therefore (at least) two natural
ays to couple inhomogeneous Poisson processes with different rates.
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Fig. 1. The left figure shows events of the unit rate Poisson process on R2
+. The right figure how those events

become events of a time-inhomogeneous Poisson process on R+ of rate φ: an event at (x, y) becomes an event at
= x if y ≤ φ(x).

First, if N̄ is a unit-rate Poisson counting process, then we can define N γ
= (N γ

t )t≥0 by
N γ

t = N̄∫ t
0 γs ds . Then, given a pair of Poisson processes N γ and N ξ we can couple them by

riting N γ
t = N̄∫ t

0 γs ds and N ξ
t = N̄∫ t

0 ξs ds . If
∫ t

0 γsds ≥
∫ t

0 ξsds for all t then N γ
t ≥ N ξ

t for all t .
Second, we can consider N γ as the counting process derived from a homogeneous space–

ime Poisson process NR2
+ in which there is an event of N γ in [s, t) if and only if there is an

vent of NR2
+ in {(u, z) : s ≤ u < t, z ≤ γu}. See Fig. 1. Here, NR2

+ is a Poisson process in
he first quadrant of the plane for which the number of points in a set A ⊆ R2

+
is a Poisson

andom variable with mean the area of A.
We take the second approach. Since θ is increasing (and we have coupled X x and X y so

hat X x
t ≤ X y

t for all t) we have a set inclusion of the event times for the Poisson process with
ate θ (X x

t )t≥0 within the set event times for the Process with rate θ (X y
t )t≥0:

T(θ (X x
t ))t≥0 = {u : (u, z) ∈ NR2

+ , z ≤ θ (X x
u )} ⊆ {u : (u, z) ∈ NR2

+ , z ≤ θ (X y
u )}

= T(θ (X y
t ))t≥0 .

In particular, any candidate stopping time for the process started at x is also a candidate
topping time for the process started at y. Then

sup
τ∈T (T(θ (X x

t ))t≥0 )

E[e−βτ g(X x
τ )] ≤ sup

τ∈T (T(θ (X x
t ))t≥0 )

E[e−βτ g(X y
τ )]

≤ sup
τ∈T (T(θ (X y

t ))t≥0 )

E[e−βτ g(X y
τ )]

here the first inequality comes from X x
·

≤ X y
· and the second from the inclusion T (T(θ (X x

t ))t≥0 )
T (T(θ (X y

t ))t≥0 ). □

heorem 3.2. Suppose X is exponential Brownian motion. Suppose g is convex. Then
x [e−βt g(X t )], Gλ(x) = E[e−βT λ1 g(XT λ1

)] and Vλ(x) are convex in x.

roof. This result extends a result of Merton [21, Theorem 10] from convexity of w in x to
onvexity of V .
λ
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Suppose d X t = σ X t d Bt +µX t dt . Then there is a coupling such that X x has representation
X x

t = x Z t where Z t = eσ Bt +(µ−
1
2 σ

2)t is independent of x . Then for x < y and ζ ∈ (0, 1),

g(X ζ x+(1−ζ )y
t ) = g(ζ x Z t + (1 − ζ )y Z t ) ≤ ζg(x Z t ) + (1 − ζ )g(y Z t )

= ζg(X x
t ) + (1 − ζ )g(X y

t ). (15)

It follows that for any stopping time τ we have g(X ζ x+(1−ζ )y
τ ) ≤ ζg(X x

τ ) + (1 − ζ )g(X y
τ ) and

hen

E[e−βτ g(X ζ x+(1−ζ )y
τ )] ≤ ζE[e−βτ g(X x

τ )] + (1 − ζ )E[e−βτ g(X y
τ )]. (16)

aking τ = T λ
1 we get that Gλ is convex. Moreover, taking a pair of supremums over τ ∈ T (Tλ)

n the right-hand-side of (16),

E[e−βτ g(X ζ x+(1−ζ )y
τ )] ≤ ζVλ(x) + (1 − ζ )Vλ(y).

ow, taking a supremum over τ ∈ T (Tλ) on the left-hand-side we obtain Vλ(ζ x + (1 − ζ )y) ≤

Vλ(x) + (1 − ζ )Vλ(y). □

emark 3.3. A similar proof applies to the case where X is Brownian motion with drift and
e deduce that if X x

t = x + aBt + bt and g is convex then Gλ(x) and Vλ(x) are convex in x .

heorem 3.4. Suppose X is a martingale diffusion. Suppose g is convex. Then Ex [e−βt g(X t )]
nd Gλ(x) are convex in x.

roof. This result extends Hobson [12, Theorem 3.1] slightly, by including the result that
Gλ(x) is convex.

For x < y < z define a triple of processes (X, Y, Z ) via

d X t = a(X t )d B X
t , X0 = x,

nd similarly dYt = a(Yt )d BY
t subject to Y0 = y and d Z t = a(Z t )d B Z

t dt subject to
Z0 = z. (Here we use the more economical notation (X, Y, Z ) where normally we might write
X x , X y, X z).)

Couple the processes by making the three driving Brownian motions independent. Let
H xy

= inf{u : Xu = Yu} and H yz
= inf{u : Yu = Zu}. Fix t > 0 and let σ = H xy

∧ H yz
∧ t .

hen, by symmetry, on σ = H xy ,

(Z t − X t )g(Yt )
L
= (Z t − Yt )g(X t ) Yt g(Z t )

L
= X t g(Z t )

o that

E[(Z t − X t )g(Yt )I{σ=H xy }] = E[(Z t −Yt )g(X t )I{σ=H xy }]+E[(Yt − X t )g(Z t )I{σ=H xy }]. (17)

Similarly,

E[(Z t − X t )g(Yt )I{σ=H yz }] = E[(Z t −Yt )g(X t )I{σ=H yz }]+E[(Yt − X t )g(Z t )I{σ=H yz }]. (18)

Finally, on H xy
∧ H yz > t we have σ = t , X t < Yt < Z t and by convexity of g

(Z t − X t )g(Yt )I{σ<H xy∧H xz } ≤ (Z t − Yt )g(X t )I{σ<H xy∧H xz } + (Yt − X t )g(Z t )I{σ<H xy∧H xz }.

aking expectations, adding the result to (17) and (18), and multiplying by e−βt we obtain

E[(Z − X )e−βt g(Y )] ≤ E[(Z − Y )e−βt g(X )] + E[(Y − X )e−βt g(Z )].
t t t t t t t t t
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Using the fact that X , Y and Z are independent we conclude that

(z − x)E[e−βt g(Yt )] ≤ (z − y)E[e−βt g(X t )] + (y − x)E[e−βt g(Z t )]

nd that E[e−βt g(X x
t )] is convex in x .

Since Gλ(x) =
∫

∞

0 λe−λtEx [e−βt g(X x
t )]dt the convexity property is also inherited by

Gλ. □

emark 3.5. (i) The same proof shows that if g is concave, then Gλ is concave.
ii) Similar arguments were used in Bayraktar [2, Lemma 2.3] to prove convexity in x of

x [e−βt g(X t )] in the case where X t = e−µt X̃ t , where (X̃ t )t≥0 is a martingale diffusion. The
ain focus of Bayraktar [2] is the pricing of American options in a model with level-dependent

olatility and jumps governed by a Poisson process, and one of the goals is to show that
he price of a perpetual American put is convex in the current price of the underlying asset.
lthough the setting us quite different, there is some commonality of ideas with this paper, for

xample by looking at the value function associated with stopping on or before the time of the
th event of the Poisson process.

We close this section with two other results which will be useful in later sections.

roposition 3.6. If Gθ ≤ g then V (∞)
θ = V (n)

θ = V (1)
θ = Gθ .

roof. Suppose V (k)
θ = Gθ ≤ g. This is true for k = 1 by hypothesis. Then

V (k+1)
θ (x) = Ex [e−βT θ1 {g(XT θ1

) ∨ V (k)
θ (XT θ1

)}] = Ex [e−βT θ1 g(XT θ1
)] = Gθ (x) ≤ g(x)

nd the result follows by induction. □

roposition 3.7. Let Y be a regular martingale diffusion with state space I and let T be
n independent exponential random variable. Suppose c : I → [0,∞) is bounded on compact
ub-intervals of I and is such that Ey[c(YT )] ≥ c(y).

Let C(y) = Ey[c(YT )]. Then C is convex.

Note that convexity of c is a sufficient but not necessary condition for Ey[c(YT )] ≥ c(y).

roof. Let {T1, T2, . . .} be the event times of a Poisson process, let T0 = 0 and let {Sk =

Tk − Tk−1}k≥1 be the inter-arrival times.
Fix x, y, z ∈ I with x < y < z. Let Y0 = y and for w ∈ {x, z} define H t

w = inf{u > t :

Yu = w}. We have C(y) = Ey[c(YT1 )] and then

C(y) = Ey [
c(YT1 )I{Hx ≤Hz∧T1}

]
+ Ey [

c(YT1 )I{Hz≤Hx ∧T1}

]
+ Ey [

c(YT1 )I{T1<Hx ∧Hz }

]
.

y the Strong Markov property of Y and the fact that T1 is memoryless we have

Ey [
c(YT1 )I{Hx ≤Hz∧T1}

]
= Ey [

Ey[c(YT1 )I{Hx ≤Hz∧T1}|FHx ∧Hy∧T1 ]
]

= Ey [
Ex [c(YT1 )]I{Hx ≤Hz∧T1}

]
= C(x)Py(Hx ≤ Hz ∧ T1).

imilarly, Ey
[
c(YT1 )I{Hz≤Hx ∧T1}

]
= C(z)Py(Hz ≤ Hx ∧ T1).

Suppose inductively that
y y y [ ]
C(y) ≤ C(x)P (Hx ≤ Hz ∧ Tk) + C(z)P (Hz ≤ Hx ∧ Tk) +E c(YTk )I{Tk<Hx ∧Hz } . (19)
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We have shown this is true for k = 1. Let Y Tk be given by Y Tk
t = YTk+t . Then, on Tk < Hx ∧Hz ,

nd writing S for Sk+1,

c(YTk ) ≤ EYTk
[

c(YTk+1 )
⏐⏐FTk

]
= EYTk

[
c(Y Tk

S )I{Hx ≤Hz∧(Tk+S)}

]
+ EYTk

[
c(Y Tk

S )I{Hz≤Hx ∧(Tk+S)}

]
+EYTk

[
c(Y Tk

S )I{Tk+S<Hx ∧Hz }

]
= C(x)PYTk (Hx ≤ Hz ∧ (Tk + S)) + C(z)PYTk (Hx ≤ Hz ∧ (Tk + S))

+EYTk

[
c(Y Tk

S )I{Tk+S<Hx ∧Hz }

]
.

t follows that

Ey [
c(YTk )I{Tk<Hx ∧Hz }

]
≤ C(x)Py(Tk < Hx ≤ Hz ∧ Tk+1)

+C(z)Py(Tk < Hz ≤ Hx ∧ Tk+1)
+Ey [

c(YTk+1 )I{Tk+1<Hx ∧Hz }

]
.

ubstituting this inequality into (19) we get the equivalent statement for k +1. Hence we know
hat (19) holds for all k ≥ 1. Letting k ↑ ∞, and using the fact that Y is regular and c is
ounded on [x, z] we get

C(y) ≤ C(x)Py(Hx ≤ Hz) + C(z)Py(Hz ≤ Hx ).

hen, using the martingale property of Y we get C(y) ≤ C(x) z−y
z−x + C(z) y−x

z−x and C is
onvex. □

emark 3.8. The argument extends without change to cover the case where the unit-rate
exponential T is replaced by the first event time T θ

1 of a Poisson process with rate θ =

{θ (Yt )}t≥0, provided T θ
1 is almost surely finite. An alternative strategy for a proof is to use

the fact that we expect C to solve LY C = θ (C − c), where LY is the generator of Y . Then,
since L has no first order derivative, if C ≥ c everywhere, then C is convex.

Example 3.9. Let B be Brownian motion. For φ ≥ 0 set hφ(x) = |x | + φ
{

|1−x |+|1+x |

2 − |x |

}
.

hen hφ is symmetric about zero, and piecewise linear with kinks at 0 and ±1. Moreover,
hφ(0) = φ and hφ(x) = |x | for |x | ≥ 1. Note that hφ is convex if and only if φ ≤ 1.

Let Tλ be an exponential of rate λ > 0 and let ξ =
√

2λ. Set Hφ(x) = Ex [hφ(BTλ )]. Then,
ith L B,y

t denoting the local time of B at y by time t ,

Hφ(x) = hφ(x) +
φ

2
Ex [L B,1

Tλ
] +

φ

2
Ex [L B,−1

Tλ
] + (1 − φ)Ex [L B,0

Tλ
]

= hφ(x) +
φ

2
e−ξ |1−x |

ξ
+
φ

2
e−ξ |1+x |

ξ
+ (1 − φ)

e−ξ |x |

ξ
.

hen, for x ∈ (−1, 1),

H ′′

φ (x) = ξ 2(Hφ(x) − hφ(x)) = ξ
[
φe−ξ cosh(ξ x) + (1 − φ)e−ξ |x |

]
,

nd for |x | ≥ 1,

H ′′

φ (x) = ξ 2(Hφ(x) − hφ(x)) = ξe−ξ |x | [φ cosh ξ + (1 − φ)] .

hen Hφ is convex everywhere if and only if Hφ ≥ hφ everywhere, if and only if φ ≤
1

1−e−ξ .
n particular, if 1 < φ ≤

1
1−e−ξ then Hφ is convex, even though the payoff function hφ is not.
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3.3. Reduction of the problem to a problem in natural scale

Recall that our assumption is that X is a regular diffusion with state space I which solves
he SDE d X t = a(X t )d Bt + b(X t )dt . Moreover, Standing Assumption 1 gives that b/a2 is
ocally integrable. Then we can define s : I → R by s ′(x) = exp(−

∫ x b(z)
a(z)2 dz) and if we

set Mt = s(X t ) then M = (Mt )t≥0 solves d Mt = η(Mt )d Bt where η = (as ′) ◦ s−1. The key
oint is that M is a (local) martingale. Moreover M is a regular diffusion with state space
M = s(I). The increasing, invertible function s is called the scale function and M is said to
e in natural scale (Rogers and Williams [23, V.46]). Note that s is only determined up to a
inear transformation, so we may choose constants to make IM have a convenient form.

Let ĝ = g ◦ s−1 and θ̂ = θ ◦ s−1. Then e−βτ g(Xτ ) = e−βτ ĝ(Mτ ) and θ (X t ) = θ̂ (Mt )
so that the inhomogeneous Poisson process with rate (θ (X t ))t≥0 can be identified with the
inhomogeneous Poisson process with rate (θ̂ (Mt ))t≥0. Finally,

V̂θ̂ (m) := sup
τ∈T (Tθ̂ )

EM0=m [
e−βτ ĝ(Mτ )

]
= sup

τ∈T (Tθ )
EX0=s−1(m) [e−βτ g(Xτ )

]
= Vθ (s−1(m))

o that V̂θ̂ = Vθ ◦ s−1.
Since s−1 is increasing we conclude that proving that Vθ is increasing is equivalent to

roving that V̂θ̂ is increasing. Hence we may restrict attention to diffusions in natural scale.
he idea of transforming time-homogeneous optimal stopping problems via a change of scale

s fairly common in the probabilistic optimal stopping literature. One of the most powerful
xamples is the work of Dayanik and Karatzas [6] who give a complete and intuitive analysis
f a class of optimal stopping problems using change of scale type arguments.

When we turn to problems concerning convexity, then, recall Example 2.2, we only expect
eneral convexity results for Vθ in cases where the diffusion X is already in natural scale.

.4. Boundary behaviour

Suppose M is a regular diffusion in natural scale with state space IM with endpoints ℓ̂ and
ˆ with ℓ̂ < r̂ . Suppose M solves d Mt = η(Mt )d Bt where 1/η2 is locally integrable.

Suppose ê ∈ {ℓ̂, r̂} is finite. If M can reach ê in finite time then we say ê is accessible (see
ogers and Williams [23, Section V.47] or Revuz and Yor [22, Section VII.3] for terminology).

f ê is accessible then we assume that M is absorbed at ê. The necessary and sufficient condition
hat ê can be reached in finite time is Iη(ê) < ∞ where Iη(ê) =

∫
ê |m − ê| dm

η(m)2 . Otherwise, if
Iη(ê) = ∞, then ê cannot be reached in finite time and we say ê is a natural boundary. If ê is
a finite, accessible endpoint then ê ∈ IM ; otherwise, if ê is natural then ê /∈ IM .

Now suppose ê ∈ {ℓ̂, r̂} is infinite. If, for y ∈ (ℓ̂, r̂ ) we have limx→ê Px (Hy < ∞) > 0
(or equivalently limx→ê Ex [e−γ Hy ] > 0 for each γ > 0) then ê is an entrance boundary. The
condition that ê is an entrance boundary is Jη(ê) < ∞ where Jη(ê) =

∫
ê

dm
η(m)2 . Otherwise ê

s a natural boundary and ê /∈ IM . It is not possible for M to explode to an infinite boundary
oint in finite time.

Suppose X solving (14) is a time-homogeneous regular diffusion, not in natural scale, on
state space I with endpoints ℓ and r . We classify the boundary points of X by using the

lassification of the corresponding boundary points for M = s(X ). In particular, for e ∈ {ℓ, r},
if |s(e)| < ∞ and

∫
e

|s(x)−s(e)|
s′(x)a(x)2 dx < ∞ then e can be reached in finite time, and we take e to

e absorbing. If |s(e)| < ∞ and
∫

e
|s(x)−s(e)|
s′(x)a(x)2 dx = ∞ or if |s(e)| = ∞ and

∫
e

1
s′(x)a(x)2 dx < ∞

then e is natural.
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Standing Assumption 2. Boundary points are either natural, or if they can be reached in
nite time, they are absorbing.

. Monotonicity and convexity of V (∞)
θ

Consider the solution V (n)
θ of the Poisson optimal stopping problem, under the restriction

that stopping must occur at one of the first n events of the Poisson process N θ . We have

V (n)
θ (x) = sup

τ∈T ({T θ1 ,T
θ
2 ...T

θ
n })

Ex [
e−βτ g(Xτ )

]
. (20)

et V (0)
θ (x) = 0. Then V (1)

θ = Gθ and V (n)
θ (x) = Ex

[
e−βT θ1 max

{
g(XT θ1

), V (n−1)
θ (XT θ1

)
}]

.
Lange et al. [16] consider a multidimensional version of the Poisson optimal stopping

roblem (with constant stopping rate) and consider the sequence {V (n)
λ }n≥0. They observe that

V (n)
λ is increasing in n and show, under an assumption that a certain iterated expectation is
nite, that V (n)

λ converges to V (∞)
λ = Vλ geometrically fast. We work in one-dimension but

llow for stopping opportunities arising from a state-dependent Poisson process.
Since V (n)

θ is increasing in n there must exist a limit which is finite on I since V (n)
θ < w.

oreover, by monotone convergence

V (∞)
θ (x) = lim

n
Ex

[
e−βT θ1

{
g(XT θ1

) ∨ V (n)
θ (XT θ1

)
}]

= Ex
[
e−βT θ1

{
g(XT θ1

) ∨ V (∞)
θ (XT θ1

)
}]
. (21)

In this section we are interested in the shape of the value function V (∞)
θ . We saw some

reliminary results in this direction in Section 3.2. In Theorem 3.1 we saw that if both g and θ
re increasing then so is Vθ ; in Theorem 3.4 we saw that if g is convex and the arrival rate of
he Poisson process is constant then Gλ is convex. In section we argue that it is not the shape of

g which is crucial, but rather the monotonicity/convexity properties of Ψ where Ψ : I ↦→ R+

s given by

Ψ (x) =
g(x)θ (x)
β + θ (x)

.

n particular, if Ψ and θ are increasing then Gθ (Corollary 4.3) and V (∞)
θ (Theorem 4.5) are

ncreasing, and if Ψ is convex then V (∞)
θ is convex (Theorem 4.8). (In the next section we give

onditions under which V (∞)
θ = Vθ , and then monotonicity and convexity of Vθ are inherited

rom V (∞)
θ .) Since g increasing and θ increasing implies Ψ is increasing, and g convex and

constant implies Ψ is convex, the results of this and the next section include the results of
Section 3.2 as special cases, albeit under slightly stronger assumptions.

Lemma 4.1. Suppose (θ/a2) is locally integrable, and further that if an endpoint e ∈ {ℓ, r}

s attainable, then
∫

e θ (x) |s(x)−s(e)|
s′(x)a(x)2 dx < ∞ and θ (e) ∈ [0,∞).

Then
∫ t

0 θ (Xu)du does not explode and T θ
n ↑ ∞ almost surely.

roof. Fix c in the interior of I and define s(x) =
∫ x

c dy exp
(
−

∫ y
c

b(z)
a(z)2 dz

)
. Then s is a

cale function for X and M = s(X ) is a local martingale with d Mt = η(Mt )d Bt where
(·) = (s ′a) ◦ s−1(·). Let W be a Brownian motion started at s(x ), let H = H W

=
0 s(ℓ),s(r )
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inf{u : Wu /∈ (s(ℓ), s(r ))} and define Φu =
∫ u

0 η(Ws)−2ds on u < H with Φu = ∞ on u ≥ H .
hen, by the Occupation Times Formula (Revuz and Yor [22, VI.1.6]), for u < H we have

Φu =

∫
s(I)

1
η(w)2 LW,w

u dw =

∫
I

1
s ′(x)a(x)2 LW,s(x)

u dx

where LW,w
s is the local time of W at w by time s. Necessarily Φ is strictly increasing and

increases to infinity.
Let A be inverse to Φ and let Mt = WAt . Then A does not explode in finite time and M

solves d Mt = η(Mt )d Bt for some Brownian motion B. Finally, let X = s−1(M). Then X
olves (14) with X0 = s−1(M0) = s−1(W0) = x0.

Now, with this set-up, for t ≤ H X
ℓ,r = inf{t : X t /∈ (ℓ, r )} (note that H W

s(ℓ),s(r ) = AH X
ℓ,r

),∫ t

0
θ (Xu)du =

∫ t

0
θ ◦ s−1(WAu )du =

∫
s(I)

θ ◦ s−1(w)
η(w)2 LW,w

At
dw

=

∫ r

ℓ

θ (x)
s ′(x)a(x)2 LW,s(x)

At
dx (22)

and for t > H X
ℓ,r ,∫ t

0
θ (Xu)du =

∫ r

ℓ

θ (x)
s ′(x)a(x)2 LW,s(x)

H W
s(ℓ),s(r )

dx + θ (ℓ)[t − H X
ℓ ]+ + θ (r )[t − H X

r ]+. (23)

In particular, if both boundaries are natural, then using the fact that s ′ is bounded on compact
subsets of (ℓ, r ) and θ/a2 is locally integrable we conclude from (22) that

∫ t
0 θ (Xu)du is finite

almost surely for each t . If one or more boundaries of I are accessible (say ℓ) then the same
conclusion follows from the fact that for x0 > ℓ, EW0=s(x0)[LW,s(x)

H W
s(ℓ),s(r )

] < EW0=s(x0)[LW,s(x)
H W

s(ℓ),∞
] =

2[(s(x) ∧ s(x0)) − s(ℓ)] and hence EX0=x0

[∫
ℓ

θ (x)
s′(x)a(x)2 LW,s(x)

H W
s(ℓ),s(r )

dx
]

≤ 2
∫
ℓ

θ (x)
s′(x)a(x)2 (s(x) −

(ℓ))dx < ∞.
Let Γ be random, and let N be a Poisson process which is independent of Γ . It is easily seen

that NΓ < ∞ almost surely if and only if Γ < ∞ almost surely. It follows that N∫ t
0 θ (Xu )du < ∞

or each t almost surely and equivalently (T θ
n )n≥1 increases to infinity almost surely. □

In addition to Standing Assumptions 1 and 2, for the rest of the paper we assume

tanding Assumption 3. (θ/a2) is locally integrable. If an endpoint e ∈ {ℓ, r} is attainable,
hen

∫
e θ (x) |s(x)−s(e)|

s′(x)a(x)2 dx < ∞ and θ (e) ∈ [0,∞).

For h : I ↦→ R+ define Ψh : I ↦→ R+ by Ψh(x) =
h(x)θ (x)
β+θ (x) . Then Ψ = Ψg .

emma 4.2. Let Y solve

dYs =
a(Ys)

√
β + θ (Ys)

dWs +
b(Ys)

β + θ (Ys)
ds

ith initial condition Y0 = x. Then

Ex [e−βT θ1 h(XT θ1
)] = Ex [Ψh(YT )] (24)

where T is a unit-rate exponential random variable which is independent of Y .
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Proof. Let C = (Ct )t≥0 be given by Ct =
∫ t

0 (β + θ (X x
s ))ds. Then by the local integrability

ssumption on θ/a2 of Standing Assumption 3 we have that C increases to infinity, but does
ot explode in finite time.

Let Λ be inverse to C . Our assumptions give us that Λu < ∞ for all finite u. Let Y be given
y Ys = XΛs . Then dΛ

du =
1

β+θ(XΛu ) =
1

β+θ (Yu ) . Moreover Y is a time-homogeneous diffusion
solving the SDE

dYs = d XΛs = a(XΛs )d BΛs + b(XΛs )dΛs =
a(Ys)

√
β + θ (Ys)

d B̃s +
b(Ys)

β + θ (Ys)
ds (25)

here B̃ is a Brownian motion given by B̃t =
∫ t

0

( dΛs
ds

)−1/2
d BΛs . Note that since (β + θ )/a2

s locally integrable, Y is unique in law.
Conversely, given Y solving dYs =

a(Ys )
√
β+θ (Ys ) d B̂s +

b(Ys )
β+θ (Ys ) ds we can define Λu =

∫ u
0

dv
β+θ (Yu ) ,

= Λ−1 and Xs = YCs . Then d Xs = a(Xs)dWs + b(Xs)ds.
Conditioning on the first event of the Poisson process we have that

Ex
[
e−βT θ1 h(XT θ1

)
]

= Ex
[∫

∞

0
θ (X t )e−Ct h(X t )dt

]
= Ex

[∫
∞

0
θ (XΛu )e−uh(XΛu )dΛu

]
= Ex

[∫
∞

0
e−u h(Yu)θ (Yu)

β + θ (Yu)
du

]
= Ex

[∫
∞

0
e−uΨh(Yu)du

]
= Ex [Ψh(YT )]. □

orollary 4.3. Suppose Ψ is increasing. Then Gθ is increasing in x.

roof. Fix x < y. Let Y x and Y y denote solutions of (25) started at x and y respectively.
ince Y x and Y y are diffusions which are unique in law, there exists a coupling such that

Y x
≤ Y y pathwise (recall Theorem 3.1). In particular, there is a coupling such that Y is

ncreasing in its initial value on each sample path, and it follows that for x < y and any
ncreasing ψ , ψ(Y x

T ) ≤ ψ(Y y
T ). Then applying Lemma 4.2 with h = g and Ψg = Ψ ,

Gθ (x) = E[Ψ (Y x
T )] ≤ E[Ψ (Y y

T )] = Gθ (y). □

xample 4.4. Let X be a diffusion in natural scale on [0,∞) or (0,∞). Let g(x) = 1 + x
nd suppose θ (x) = β/(1 + 2x), with θ (0) = β if 0 is attainable. Then Ψ = 1/2 and hence

Gθ (x) =
1
2 ≤ g. Furthermore, applying Proposition 3.6 we conclude that τ = T θ

1 is optimal
nd V (∞)

θ = Gθ =
1
2 .

heorem 4.5. Suppose θ and Ψ are increasing. Then V (∞)
θ is increasing.

roof. By Lemma 4.2

V (n+1)
θ (x) = Ex

[
e−βT θ1 (g ∨ V (n)

θ )(XT θ1
)
]

= Ex [Ψg∨V (n)
θ

(YT )] (26)

here Ψg∨v(y) =
(g(y)∨v(y))θ (y)

β+θ (y) = Ψ (y) ∨
v(y)θ (y)
β+θ (y) .

If V (n)
θ is increasing, then since θ and Ψ are also increasing, Ψg∨V (n)

θ

is increasing. Then,

using (26) and a coupling argument as in the proof of Theorem 3.1, V (n+1) is increasing.
θ
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n

∫
a

∫

f

a

c

t

5

Hence, since by Corollary 4.3 we have V (1)
θ = Gθ is increasing, we have by induction that

V (k)
θ is increasing for each k. The increasing limit of increasing functions is increasing. Hence

V (∞)
θ is increasing. □

Now we turn to the issue of convexity. Since we do not expect convexity unless X is in
atural scale, for the rest of this section we suppose that X is in natural scale. Note that in

the results that follow there are assumptions on Ψ , but unlike Corollary 4.3 and Theorem 4.5,
there are no separate assumptions on θ .

Proposition 4.6. Suppose that X is in natural scale. Suppose that if ℓ = −∞ then

−∞

|y|(β+θ (y))
a(y)2 dy = ∞ and if r = +∞ then

∫
∞ y(β+θ (y))

a(y)2 dy = ∞. There is no condition
t finite endpoints.

Suppose Ψ is convex. Then Gθ is convex in x and Gθ ≥ Ψ .
Alternatively, if Ψ is concave then Gθ is concave and Gθ ≤ Ψ .

Proof. By a result of Kotani [15] the conditions at the boundaries are exactly sufficient to
guarantee that Y given by dYs = d XΛs =

a(Ys )
√
β+θ (Ys ) d Bs is a martingale. The result then follows

from the representation in (24) and Theorem 3.4 (or Remark 3.5 in the case of concavity) with
β = 0. □

Remark 4.7. The martingale property is essential here, and it is easy to construct a
counterexample in the strict local martingale case using a linear payoff and a three-dimensional
Bessel process.

Theorem 4.8. Suppose that X is in natural scale. Suppose that if ℓ = −∞ then

−∞

|y|(β+θ (y))
a(y)2 dy = ∞ and similarly if r = +∞ then

∫
∞ y(β+θ (y))

a(y)2 dy = ∞. There is no
condition at finite endpoints.

Suppose Ψ is convex. Then V (∞)
θ is convex.

Suppose Ψ is concave. Then V (∞)
θ is concave.

Proof. Suppose the conditions of the theorem hold and Ψ is convex. By Proposition 4.6,
V (1)
θ ≡ Gθ ≥ Ψ .

Suppose inductively that V n
θ ≥ V (n−1)

θ ≥ · · · ≥ V (1)
θ = Gθ ≥ Ψ .

Consider V (n+1)
θ (y). By (26) we have V (n+1)

θ (y) = Ey[Ψg∨V (n)
θ

(YT )]. Since V (n)
θ ≥ V (n−1)

θ it

ollows that V (n+1)
θ ≥ V (n)

θ ≥ · · · ≥ V (1)
θ = Gθ ≥ Ψ (y). Moreover, V (n+1)

θ ≥ V (n)
θ ≥

V (n)
θ (y)θ (y)
β+θ (y) .

In particular, V (n+1)
θ ≥ Ψ ∨

V (n)
θ θ

β+θ
= Ψg∨V (n)

θ

. Thus, V (n+1)
θ (y) = Ey[Ψg∨V (n)

θ

(YT )] ≥ Ψg∨V (n)
θ

(y),

nd by Proposition 3.7 with c = Ψg∨V (n)
θ

we conclude that V (n+1)
θ is convex.

Finally, since the increasing limit of convex functions is convex we conclude that V (∞)
θ is

onvex.
The corresponding result for concavity is more direct: if Ψ is concave then Gθ ≤ Ψ =

gθ
β+θ

≤ g. Then V (n)
θ = V (1)

θ = Gθ and V (∞)
θ = Gθ . Since Gθ is concave by Proposition 4.6,

he result follows. □

. Monotonicity and convexity of Vθ

Standing Assumptions 1–3 remain in force.
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R
s
i

P

c

I

H

C

C∫
Proposition 5.1. Suppose

E
[

sup
s≥0

{
e−βs g(Xs)

}]
< ∞ and lim

t↑∞

E
[

sup
s≥t

{
e−βs g(Xs)

}]
= 0. (27)

Then Vθ (x) = V (∞)
θ (x).

emark 5.2. From the discussion at the end of Example 2.3 we know that (27) holds in that
etting, and clearly it also holds whenever g is bounded. Indeed it holds for all the examples
n Section 2.

roof. Let K = E
[
sups≥0

{
e−βs g(Xs)

}]
. Given ϵ > 0, choose t0 such that E

[
sups≥t0{

e−βs g(Xs)
}]
< ϵ/2, and, recalling that by Lemma 4.1 we have that T θ

n ↑ ∞ almost surely,
hoose n0 such that P(T θ

n0
≤ t0) < ϵ

2K .

Then, for any stopping time τ ∈ T (Tθ ) and n ≥ n0,

Ex
[

I
{τ>T θn }

e−βτ g(Xτ )
]

= Ex
[

I
{τ>T θn >t0}

e−βτ g(Xτ )
]

+ Ex
[

I
{τ>T θn }

I
{t0≥T θn }

e−βτ g(Xτ )
]

≤ Ex [
I{τ>t0}e−βτ g(Xτ )

]
+ Ex

[
I
{t0≥T θn }

sup
s≥0

{
e−βs g(Xs)

}]

≤ Ex

[
sup
s≥t0

{
e−βs g(Xs)

}]
+ Px (T θ

n ≤ t0)Ex
[

sup
s≥0

{
e−βs g(Xs)

}]
<
ϵ

2
+

ϵ

2K
K = ϵ.

t follows that

sup
τ∈T (Tθ )

Ex [
e−βτ g(Xτ )

]
= sup

τ∈T (Tθ )

{
Ex [

e−βτ g(Xτ )I{τ≤Tn}

]
+ Ex [

e−βτ g(Xτ )I{τ>Tn}

]}
≤ sup

τ∈T ({T θ1 ,...,T
θ
n })

Ex [
e−βτ g(Xτ )

]
+ ϵ

= V (n)
θ (x) + ϵ

ence, for large enough n, V (n)
θ (x) ≤ Vθ (x) ≤ V (n)

θ (x) + ϵ. Taking limits we find Vθ =

V (∞)
θ . □

Combining Proposition 5.1 and Theorem 4.5 we obtain:

orollary 5.3. Suppose θ and Ψ are increasing and that (27) holds. Then Vθ is increasing.

Combining Theorem 4.8 and Proposition 5.1 we obtain the corresponding result for Vθ :

orollary 5.4. Suppose that X is in natural scale. Suppose that if ℓ = −∞ then

−∞

|y|(β+θ (y))
a(y)2 dy = ∞ and similarly if r = +∞ then

∫
∞ y(β+θ (y))

a(y)2 dy = ∞. There is no
condition at finite endpoints. Suppose that (27) holds.

Suppose Ψ is convex. Then Vθ is convex.
Suppose Ψ is concave. Then Vθ is concave.
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