期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:121
Stationary solutions of the stochastic differential equation dVt = Vt-dUt + Lt with Levy noise
Article
Behme, Anita1  Lindner, Alexander1  Maller, Ross2,3 
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Math Stochast, D-38106 Braunschweig, Germany
[2] Australian Natl Univ, Ctr Math Anal, Canberra, ACT, Australia
[3] Australian Natl Univ, Sch Finance & Appl Stat, Canberra, ACT, Australia
关键词: Stochastic differential equation;    Levy process;    Generalized;    Ornstein-Uhlenbeck process;    Stochastic exponential;    Stationarity;    Non causal;    Filtration expansion;   
DOI  :  10.1016/j.spa.2010.09.003
来源: Elsevier
PDF
【 摘 要 】

For a given bivariate Levy process (U-t L-t)(t >= 0) necessary and sufficient conditions for the existence of a strictly stationary solution of the stochastic differential equation dV(t) = dU(t) + dL(t) are obtained Neither strict positivity of the stochastic exponential of U nor independence of V-0 and (U L) is assumed and non-causal solutions may appear The form of the stationary solution is determined and shown to be unique in distribution, provided it exists For non causal solutions a sufficient condition for U and L to remain semimartingales with respect to the corresponding expanded filtration is given (c) 2010 Elsevier B V All rights reserved

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2010_09_003.pdf 283KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次