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Abstract

For a given bivariate Lévy process (Ut , L t )t≥0, necessary and sufficient conditions for the existence
of a strictly stationary solution of the stochastic differential equation dVt = Vt− dUt + dL t are obtained.
Neither strict positivity of the stochastic exponential of U nor independence of V0 and (U, L) is assumed
and non-causal solutions may appear. The form of the stationary solution is determined and shown to be
unique in distribution, provided it exists. For non-causal solutions, a sufficient condition for U and L to
remain semimartingales with respect to the corresponding expanded filtration is given.
c⃝ 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Let (ξ, η) = (ξt , ηt )t≥0 be a bivariate Lévy process. The generalised Ornstein–Uhlenbeck
process (GOU) associated with (ξ, η) is

Vt = e−ξt


V0 +

∫ t

0
eξs−dηs


, t ≥ 0, (1.1)

where V0 is a finite random variable, independent of (ξ, η). See [14,16] for further information
and references on GOUs. In [14], necessary and sufficient conditions for a GOU to be strictly
stationary were obtained, and properties of the strictly stationary solution studied.
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As pointed out in Eq. (15) in [16], the GOU in (1.1) is the unique solution of the stochastic
differential equation

dVt = Vt−dUt + dL t , t ≥ 0, (1.2)

where (U, L) is another bivariate Lévy process, constructed from (ξ, η) by


Ut
L t


=

−ξt +

−
0<s≤t

(e−1ξs − 1 + 1ξs) + t σ 2
ξ /2

ηt +

−
0<s≤t

(e−1ξs − 1)1ηs − t σξ,η

 , t ≥ 0. (1.3)

Here (1ξt , 1ηt ) = (ξt − ξt−, ηt − ηt−) denotes the jump process of (ξ, η) at time t , and
σ 2

ξ and σξ,η denote the (1, 1) and (1, 2) elements of the Gaussian covariance matrix in the
Lévy–Khintchine representation of the characteristic function of (ξ, η). The definition of U in
(1.3) is equivalent to saying that E (U )t = e−ξt , where E (U ) denotes the Doléans–Dade stochastic
exponential of U (see [17], Theorem II.37). In general the stochastic exponential may take zero
or negative values, but in satisfying E (U )t = e−ξt , we see that this version of E (U ) must be
strictly positive, which is equivalent to the Lévy measure of U having no mass on (−∞, −1].

The purpose of the present paper is to extend the results of [14] to the more general setting
of solutions to the stochastic differential equation (1.2), where (U, L) is an arbitrary bivariate
Lévy process. In particular, we do not assume that the Lévy measure ΠU of U is concentrated
on (−1, ∞), but also allow jumps of size less than or equal to −1. As a second generalisation,
we shall allow possible dependence between the starting random variable V0 and (U, L). Even
in the case when ΠU ((−∞, −1]) = 0, this represents a sharpening of the results of [14]. As
in time series analysis, we will call a solution with V0 being independent of (U, L) a causal or
non-anticipative solution. We shall see that non-causal solutions can appear in some important
cases.

Dealing with the non-causality is non-trivial as it introduces a possible problem regarding the
filtration with respect to which the stochastic differential equation (1.2) is defined, such that U
still remains a semimartingale. Hence, in the following, possible non-causal solutions (relevant in
the case ΠU ({−1}) = 0) will be interpreted in the following sense. First, (1.2) is solved assuming
that U is a semimartingale for a suitable filtration to which V is adapted. This is achieved, with
the general solution given by (2.7) below. In Eq. (2.7), however, the semimartingale problem is
avoided since V0 enters in an additive fashion there and does not have to be measurable with
respect to the filtration for which the stochastic integrals are defined. The problem of finding
all stationary solutions is thus reduced to finding all possible choices of V0, without assuming
independence, such that the process given by (2.7) is strictly stationary.

This we do in Theorems 2.1 and 2.2 of the next section. After that, Section 3 sets notation,
verifies that the solution to (1.2) is as given in Eqs. (2.3) and (2.7) of Theorems 2.1 and 2.2, and
introduces various auxiliary processes used throughout the paper. Also in Section 3 necessary
and sufficient conditions for the almost sure convergence of the integrals


∞

0 E (U )s− dLs and
∞

0 [E (U )s−]
−1 dηs in terms of the characteristic triplets of the underlying Lévy processes are

given. These are essential results for characterising the existence of a stationary solution to (1.2).
Section 4 gives the proofs of Theorems 2.1 and 2.2, and of two useful corollaries also stated

in Section 2. The semimartingale problem described above is taken up again in Section 5. In the
situation of Theorem 2.1(b), non-causal solutions of (2.7) appear, and Section 5 is concerned with
the question of filtration enlargements such that the non-causal solution is adapted and U remains
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a semimartingale with respect to it. It is shown that absolute continuity of


∞

0 [E (U )s−]
−1 dηs is

a sufficient condition for this to hold and examples when this condition is satisfied are mentioned.
We shall not deal with applications in this paper, but only remark at this stage that the

GOU and stationary solutions of the SDE (1.2) are important in the analysis of the COGARCH
(continuous time GARCH model) due to Klüppelberg et al. [11]. An option pricing model based
on COGARCH, and incorporating the possibility of default, has recently been proposed by
Szimayer; see [12]. For the solution of (1.2), in a financial process setting, a jump of U of
size −1 can be interpreted as the occurrence of default, and jumps of size less than −1 have
interpretations when U describes the value of a certain contract, when a positive value enforces
an obligation to pay.

2. Main results

Let (U, L) be a bivariate Lévy process with characteristic triplet


σ2
U σU,L

σU,L σ2
L


,ΠU,L , γU,L


defined on a complete probability space (Ω , F , P), and correspondingly denote the characteristic
triplets of the coordinate processes U and L by (σ 2

U ,ΠU , γU ) and (σ 2
L ,ΠL , γL), respectively.

Here and in the following, the characteristic triplet is taken as in [18], Definition 8.2. To avoid
trivialities assume throughout that neither U nor L is the zero Lévy process. Let F = (Ft )t≥0 be
the smallest filtration satisfying the “usual hypotheses” (cf. [17], Section I.1) such that both U
and L are adapted. Then U and L are semimartingales with respect to F. Denote by

E (U )t := eUt −tσ 2
U /2

∏
0<s≤t

(1 + 1Us)e−1Us , t ≥ 0, (2.1)

the Doléans–Dade exponential of U (e.g. [17, Theorem II.37]). The exponential E (U ) is the
unique semimartingale Z (with respect to F) such that Z t = 1 +


(0,t] Zs− dUs . It is strictly

positive if and only if ΠU ((−∞, −1]) = 0, and nowhere zero if and only if ΠU ({−1}) = 0.
The main theorems of this paper give necessary and sufficient conditions for the existence of

a strictly stationary solution of (1.2) in all cases, in particular including ΠU ((−∞, −1)) ≥ 0 and
ΠU ({−1}) ≥ 0. Even in the case ΠU ((−∞, −1]) = 0 (the only one treated in [14]) they sharpen
the results of [14], since independence of V0 and (U, L) is not assumed a priori in our present
results, whereas it was a crucial ingredient in [14] for the proof in the oscillating case.

We first deal with the case ΠU ({−1}) = 0. Define an auxiliary process η by

ηt := L t −

−
0<s≤t

1Us ≠−1

1Us1Ls

1 + 1Us
− tσU,L , t ≥ 0. (2.2)

As will be seen in Proposition 3.2 below, the general solution to (1.2) is given by (2.7), which in
the case ΠU ({−1}) = 0 simplifies to (2.3).

Theorem 2.1. Let (U, L) be a bivariate Lévy process such that ΠU ({−1}) = 0. Let (Vt )t≥0 be
given by

Vt = E (U )t


V0 +

∫
(0,t]

[E (U )s−]
−1dηs


, t ≥ 0, (2.3)

where the stochastic integral in (2.3) is with respect to F.

(a) Suppose that limt→∞ E (U )t = 0 a.s. Then a finite random variable V0 can be chosen such
that (Vt )t≥0 is strictly stationary if and only if


(0,∞)

E (U )s−dLs converges almost surely. If this
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condition is satisfied, then the strictly stationary solution is unique in distribution when viewed
as a random element in D[0, ∞), and it is obtained by choosing V0 to be independent of (U, L)

and to have the same distribution as

(0,∞)

E (U )s−dLs .

(b) Suppose that limt→∞[E (U )t ]
−1

= 0 a.s. Then a finite random variable V0 can be chosen
such that (Vt )t≥0 is strictly stationary if and only if


(0,∞)

[E (U )s−]
−1dηs converges a.s. In this

case the stationary solution is unique and given by Vt = −E (U )t

(t,∞)

[E (U )s−]
−1dηs a.s.,

t ≥ 0.
(c) Suppose that E (U )t oscillates in the sense that

0 = lim inf
t→∞

|E (U )t | < lim sup
t→∞

|E (U )t | = +∞ a.s.

Then Vt admits a strictly stationary solution if and only if there exists k ∈ R \ {0} such that
U = −L/k. In this case the strictly stationary solution is indistinguishable from the constant
process t → k.

The possibilities for the asymptotic behaviour of E (U )t in (a), (b) and (c) of Theorem 2.1
are mutually exclusive and exhaustive; see Theorem 3.5 in Section 3. Conditions for the
almost sure convergence of the integrals


(0,∞)

E (U )s− dLs and

(0,∞)

[E (U )s−]
−1 dηs are

given in Theorem 3.6 and Corollary 3.7, respectively. Observe that the solutions obtained in
Theorem 2.1(a), (c) are equal in distribution to a causal solution, while the solution in part (b) is
purely non-causal.

The case when ΠU ({−1}) > 0 is treated in the next theorem. Again, the solutions turn out to
be equal in distribution to a causal solution. We will need some other auxiliary processes:Ut = Ut −

−
0<s≤t

1Us=−1

1Us and ηt = ηt −

−
0<s≤t

1Us=−1

1ηs, t ≥ 0, (2.4)

and

K (t) := number of jumps of size −1 of U in [0, t], (2.5)

T (t) := sup{s ≤ t : 1Us = −1}, (2.6)

all for t ≥ 0. It is easy to see that (U, L , η, K ) is a Lévy process. Also, for 0 ≤ s < t define

E (U )(s,t] := e(Ut −Us )−σ 2
U (t−s)/2

∏
s<u≤t

(1 + 1Uu)e−1Uu ,

E (U )(s,t) := e(Ut−−Us )−σ 2
U (t−s)/2

∏
s<u<t

(1 + 1Uu)e−1Uu ,

while for s ≥ t let E (U )(s,t] := 1, and define similar quantifies for E (U ). Recall again that (2.7)
gives the general solution of (1.2) as will be seen in Proposition 3.2.

Theorem 2.2. Let (U, L) be a bivariate Lévy process such that ΠU ({−1}) > 0. Let η and K be
as defined in (2.2) and (2.5), respectively, and let (Vt )t≥0 be given by

Vt = E (U )t


V0 +

∫
(0,t]

[E (U )s−]
−1dηs


1{K (t)=0}

+ E (U )(T (t),t]


1LT (t) +

∫
(T (t),t]

[E (U )(T (t),s)]
−1dηs


1{K (t)≥1}, t ≥ 0, (2.7)

where the stochastic integrals in (2.7) are with respect to F. Then the following hold:
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(a) A finite random variable V0 can be chosen such that (Vt )t≥0 is strictly stationary. More
precisely, with U andη as defined in (2.4), define

Z t = E (U )t


Y +

∫
(0,t]

[E (U )s−]
−1dηs


, t ≥ 0, (2.8)

where Y is a random variable, independent of (U, L), with distribution

PY (dy) =
ΠU,L({−1}, dy)

ΠU ({−1})
,

i.e., Y has the same distribution as 1LT1 , where T1 denotes the time of the first jump of U of
size −1. Let τ be an exponentially distributed random variable with parameter λ := ΠU ({−1}),
independent of (U, L) and Y . Then if V0 is chosen to be independent of (U, L) and to have the
same distribution as Zτ , the process (Vt )t≥0 is strictly stationary.

(b) Any two strictly stationary solutions (Vt )t≥0 are equal in distribution when viewed as random
elements of D[0, ∞), having the same distribution as the process specified in (a).

The necessary and sufficient conditions for strictly stationary solutions of (1.2) in the specific
cases can be summarised as follows.

Corollary 2.3. Let (U, L) be a bivariate Lévy process, and let (ηt )t≥0 and V = (Vt )t≥0 be
defined by (2.2) and (2.7). Then a finite random variable V0 can be chosen such that V is strictly
stationary if and only if one of the conditions (i), (ii) or (iii) below holds:

(i) There is a constant k ≠ 0 such that U = −L/k.
(ii) The integral

 t
0 E (U )s− dLs converges almost surely to a finite random variable as t → ∞.

(iii) ΠU ({−1}) = 0 and the integral
 t

0 [E (U )s−]
−1 dηs converges almost surely to a finite

random variable as t → ∞.

If one of the conditions (i) to (iii) is satisfied, then the distributions of V0 and of the corres-
ponding strictly stationary process V are unique.

A natural question is that of how close the stationary solution of Theorem 2.2 is to the
stationary solution of Theorem 2.1(a) if ΠU ({−1}) is small. The following shows that the
stationary marginal distribution of Theorem 2.1 can be obtained as a limit of stationary marginal
distributions with ΠU ({−1}) > 0 under certain conditions, and more generally that the
corresponding stationary processes converge weakly in the J1-Skorokhod topology. Recall that
this is the unique topology on D[0, ∞) making it a Polish space and such that a sequence (αn)n∈N
in D[0, ∞) converges to α ∈ D[0, ∞) if and only if there is a sequence (γn)n∈N of continuous
bijections on [0, ∞) with γn(0) = 0 such that

lim
n→∞

sup
s≥0

|γn(s) − s| = 0 and lim
n→∞

sup
0≤s≤N

|αn(γn(s)) − α(s)| = 0 for all N ∈ N;

see e.g. [8], Section VI.1.

Corollary 2.4. Let (U, L) be a bivariate Lévy process with ΠU ({−1}) = 0 and such that
(0,∞)

E (U )s− dLs converges almost surely. Let V = (Vt )t≥0 be the strictly stationary solution

of (2.3) specified in Theorem 2.1(a). Let (U
(n)

, L
(n)

) be a sequence of bivariate compound
Poisson processes, independent of (U, L), with Lévy measure λnσ , where σ is a probability
distribution on {−1} × R and λn > 0 for each n ∈ N with λn → 0 as n → ∞. Let
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(U (n), L(n)) := (U +U
(n)

, L + L
(n)

), and let V (n)
= (V (n)

t )t≥0 be the strictly stationary solution
of the process associated with (U (n), L(n)) as specified in Theorem 2.2(a). Then V (n) converges
weakly to V as n → ∞ when viewed as random elements in D[0, ∞) endowed with the J1-
Skorokhod topology.

3. Preliminary results

Throughout the paper, “
P
→” and “

D
→” will denote convergence in probability and distribution,

respectively, while “
D
=” denotes equality in distribution of two random variables.

3.1. Solving the SDE

We begin with the following lemma, which is a generalisation of Proposition 2.3 in [14] and
can be proved analogously. As usual, [·, ·] denotes the quadratic covariation of two semimartin-
gales, and the integrals and quadratic covariation below are understood with respect to F.

Lemma 3.1. Let (Ut , L t )t≥0 be a bivariate Lévy process with ΠU ({−1}) = 0 and (ηt )t≥0 defined
by (2.2). Then for every t ≥ 0, we have∫

(0,t]
E (U )s−dLs =

∫
(0,t]

E (U )s−dηs + [E (U ), η]t (3.1)

and  E (U )t

E (U )t

∫
(0,t]

[E (U )s−]
−1dηs

 D
=

 E (U )t∫
(0,t]

E (U )s−dLs

 . (3.2)

We can now verify that (2.3) and (2.7) solve the stochastic differential equation (1.2). For the
case when both U and L remain semimartingales for H in the following proposition, the result
can be found in Exercise V.27 of Protter [17], who refers to an unpublished note by Yoeurp and
Yor. For the case when additionally ΠU ((−∞, −1]) = 0, see also Eq. (15) of [16]. Given that U
and L are semimartingales and ΠU ({−1}) = 0 the result is also given in [9, Theorem 1]. Since
the result is of fundamental importance for this paper, we shall give a short sketch of its proof for
the case when both U and L remain semimartingales and then extend it to the case when only U
remains a semimartingale.

Proposition 3.2. Let V0 be a finite random variable and let H = (Ht )t≥0 be the smallest
filtration satisfying the usual hypotheses which contains F and is such that V0 is H0 measurable.
Let η, K , T be as defined in (2.2), (2.5) and (2.6), respectively. Assume that U remains
a semimartingale with respect to H. Then the unique adapted càdlàg solution to (1.2), or,
equivalently, to the integral equation

Vt = V0 + L t +

∫
(0,t]

Vs−dUs, t ≥ 0, (3.3)

is given by (2.7). If ΠU ({−1}) = 0, then the unique solution is given by (2.3).

Proof. By Theorem V.7 in [17], (3.3) has a unique H-adapted càdlàg solution, so it only remains
to show that the process given by (2.7) satisfies (3.3). For that, suppose first that V0 is F0-
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measurable, so H = F, in which case the result is known from Exercise V.27 in [17], but
again it is useful to give a short sketch: since the solution of (3.3) clearly satisfies Vt = 1L t
if 1Ut = −1, the equation renews itself with starting value 1L t whenever a jump in K occurs
at time t , so by (2.7) it suffices to consider the case ΠU ({−1}) = 0; thus, K (t) = 0. Then writing
At = E (U )t and Bt = V0 +


(0,t] E (U )−1

s− dηs , the process V given by (2.3) satisfies Vt = At Bt
and A, B, V are semimartingales with respect to F. Partial integration then gives

Vt − V0 =

∫
(0,t]

As−dBs +

∫
(0,t]

Bs−dAs + [A, B]t

=

∫
(0,t]

dηs +

∫
(0,t]

Bs−d(E (U )s) +

∫
(0,t]

[E (U )s−]
−1d([E (U ), η]s)

=

∫
(0,t]

dLs +

∫
(0,t]

Vs−dUs,

where we have used the facts that dE (U )t = E (U )t− dUt and d[E (U ), η]t = E (U )t−d(L t − ηt )

(the latter follows from (3.1)). Thus (3.3) holds.
Now suppose that V0 is not necessarily F0-measurable and that U remains a semimartingale

with respect to H. Let Vt be the unique H-adapted càdlàg solution of (3.3) and define a process
V ′ by

V ′
t := Vt − V0 E (U )t1{K (t)=0} = Vt − V0 E (U )t , t ≥ 0. (3.4)

Substituting for Vt in (3.3) gives

V ′
t = V0 + L t +

∫
(0,t]

V ′
s− dUs +

∫
(0,t]

V0 E (U )s− dUs − V0 E (U )t

= L t +

∫
(0,t]

V ′
s− dUs + V0


1 +

∫
(0,t]

E (U )s− dUs − E (U )t


= L t +

∫
(0,t]

V ′
s− dUs .

Since V ′

0 = 0 is F0-measurable it follows from the part already proved that V ′
t is of the form

(2.7) with V ′

0 = 0, and (3.4) then shows that Vt satisfies (3.3). �

As already pointed out in Section 1, when seeking stationary solutions of the SDE (1.2), in
Theorems 2.1 and 2.2 we more conveniently look for stationary solutions of Eq. (2.7), since no
semimartingale problems with respect to H arise in (2.7), the integrals being defined in terms
of F there. The arising semimartingale problem for the SDE (1.2) for non-causal solutions as
in Theorem 2.1(b) is taken up again in Section 5. In the case that V0 is chosen independent of
(U, L), as in Theorem 2.1(a), (c) and Theorem 2.2, there are no problems with the filtration,
since then, further, U, L and η all remain semimartingales for H by Corollary 1 to Theorem
VI.11 in [17]. In that case, (Vt )t≥0 is also a time homogeneous Markov process and we give its
transition functions in the following lemma. Recall U andη defined in (2.4).

Lemma 3.3. Let (Vt )t≥0 be as defined in (2.7) and suppose that V0 is independent of
(Ut , L t )t≥0. Then (Vt )t≥0 is a time homogeneous Markov process. More precisely, defining

As,t := E (U )(s,t]1{K (t)=K (s)} and Bs,t := E (U )(s,t]

∫
(s,t]

[E (U )(s,u)]
−1dηu (3.5)
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for 0 ≤ s < t , with U andη given by (2.4), we have

Vt = As,t Vs + Bs,t1{K (t)−K (s)=0} + [AT (t),t1LT (t) + BT (t),t ]1{K (t)−K (s)>0}, (3.6)

with (As,t , Bs,t , K (t) − K (s))t≥s being independent of Hs and

(As,t , Bs,t , K (t) − K (s))
D
=(As+h,t+h, Bs+h,t+h, K (t + h) − K (s + h)) (3.7)

for every h ≥ 0 and t ≥ s. Here, Hs is as defined in Proposition 3.2.

Proof. These are direct consequences of (2.7) and the strong Markov property of Lévy processes,
respectively. �

It should be noted that Eq. (3.6) also holds with As,t , Bs,t1{K (t)−K (s)=0}, AT (t),t and BT (t),t
1{K (t)−K (s)>0} being replaced by the corresponding quantities using (U, η) in the definition of
(3.5) rather than (U ,η), but the advantage of the definition using (U ,η) in (3.5) is that Bs,t can
be defined for any s ≤ t and hence allows a statement like (3.7).

3.2. Other auxiliary processes and their properties

In the case that ΠU ({−1}) = 0 it is helpful to introduce the processes N = (Nt )t≥0,U = (Ut )t≥0 and W = (Wt )t≥0 defined by

Nt := number of jumps of size < − 1 of U in [0, t], (3.8)Ut := −Ut + σ 2
U t/2 +

−
0<s≤t

[1Us − log |1 + 1Us |], (3.9)

Wt := −Ut + σ 2
U t +

−
0<s≤t

(1Us)
2

1 + 1Us
. (3.10)

Then (U, L , η, N , U , W ) is a Lévy process. We are interested in the characteristic triplets of U
and W and their expectations when they exist, which appear in Theorem 3.5 and Corollary 3.7,
respectively.

Lemma 3.4. Let U have characteristic triplet (σ 2
U ,ΠU , γU ) and suppose that ΠU ({−1}) = 0.

Let N , U and W be as defined in (3.8)–(3.10). Then we have:

(a) The process U is a Lévy process satisfying

E (U )t = (−1)Nt e−Ut , t ≥ 0, (3.11)

and the characteristic triplet (σ 2U ,ΠU , γU ) of U has σ 2U = σ 2
U , (ΠU )|R\{0} = X (ΠU )|R\{0} and

γU = −γU + σ 2
U /2

+

∫
R
(x1{|x |≤1} − (log |1 + x |)1{x∈[−e−1,−1−e−1]∪[e−1−1,e−1]})ΠU (dx),

where X (ΠU ) is the image measure of ΠU under the transformation

X : R \ {−1} → R, x → X (x) = − log |1 + x |. (3.12)
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We have E |U1| < ∞ if and only if∫
|x |≥e

log |x |ΠU (dx) < ∞ and
∫

(−3/2,−1/2)

| log |1 + x ||ΠU (dx) < ∞, (3.13)

in which case

EU1 = −γU + σ 2
U /2 +

∫
R
(x1{|x |≤1} − log |1 + x |)ΠU (dx). (3.14)

(b) The process W is a Lévy process satisfying

[E (U )t ]
−1

= E (W )t , t ≥ 0, (3.15)

and its characteristic triplet (σ 2
W ,ΠW , γW ) is given by σ 2

W = σ 2
U , ΠW = Y (ΠU ) for the

transformation

Y : R \ {−1} → R \ {−1}, x → Y (x) =
−x

1 + x
,

and

γW = −γU + σ 2
U +

∫
R


x1{|x |≤1} −

x

1 + x
1{x≥−1/2}


ΠU (dx).

We have E |W1| < ∞ if and only if∫
(−3/2,−1/2)

|1 + x |
−1 ΠU (dx) < ∞, (3.16)

in which case

EW1 = −γU + σ 2
U +

∫
[−1,1]

x2

1 + x
ΠU (dx) −

∫
|x |>1

x

1 + x
ΠU (dx). (3.17)

Proof. (a) Eq. (3.11) is immediate from (2.1), (3.8) and (3.9). From (3.9) we obtain

1Ut = − log |1 + 1Ut |, t ≥ 0,

which implies (ΠU )|R\{0} = X (ΠU )|R\{0}. The Brownian motion components of U and U satisfy
BUt

= −BUt , so σ 2U = σ 2
U . For the calculation of γU , take ε > 0 and let Cε := [−1 − eε,

−1 − e−ε
] and Dε := [−1 + e−ε, −1 + eε

]. Omitting the summation index 0 < s ≤ 1 in the
following calculations, it then follows from the Lévy–Itô decomposition ([18], Theorem 19.2) ofU that

γU + BU1
= U1 − lim

ε↓0

 −
|1Us |>ε

1Us −

∫
|x |∈(ε,1]

x ΠU (dx)

 .

By (3.9), the latter is equal to

−U1 + σ 2
U /2

+ lim
ε↓0

 −
1Us∈R

(1Us − log |1 + 1Us |) −

−
|1Us |>ε

1Us +

∫
|x |∈(ε,1]

x ΠU (dx)

 .
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Now, because 1Us = − log |1 + 1Us |, we have |1Us | ≤ ε if and only if 1Us ∈ Cε ∪ Dε. Thus

γU + BU1
= −U1 + σ 2

U /2 + lim
ε↓0

 −
1Us∈Cε∪Dε

(1Us − log |1 + 1Us |)

+

−
1Us ∉Cε∪Dε

1Us +

∫
|x |∈(ε,1]

x ΠU (dx)


.

Since Cε and Dε shrink to the points −2 and 0 as ε ↓ 0, since 1Us − log |1+1Us | = O(1Us)
2

for 1Us near 0 and limε↓0
∑

1Us∈Dε
(1Us)

2
= 0, this leaves

γU + BU1
= −U1 + σ 2

U /2 + lim
ε↓0

 −
1Us ∉Dε

1Us +

∫
|x |∈(ε,1]

x ΠU (dx)


.

Using the Lévy–Itô decomposition ([18], Theorem 19.2) again, but now for the process U , we
obtain

γU + BU1
= σ 2

U /2 − γU − BU1 + lim
ε↓0

∫
|x |∈[−1,1]\Dε

x ΠU (dx) +

∫
|x |∈(ε,1]

x ΠU (dx)


.

Together with BU1
= −BU1 and ΠU = X (ΠU ) this implies the given representation for γU .

Next, observe that E |U1| < ∞ if and only if

|x |>1 |x |ΠU (dx) < ∞ ([18], Example 25.12),

which is equivalent to (3.13) since ΠU = X (ΠU ) on R \ {0}. Eq. (3.14) then follows from the
representation of γU and the fact that EU1 = γU +


|x |>1 x ΠU (dx).

(b) Eq. (3.15) was obtained by Léandre [13] and detailed proofs can be found in [10, Theorem
1] or [9, Lemma A.1].

The remaining assertions follow similarly to the ones proved in (a). �

Similarly, it can be shown that the Lévy measure of η as defined in (2.2) is the restriction to
R \ {0} of the image measure of ΠU,L under the mapping (R \ {−1}) × R → R, (x, y) →

y
1+x ,

and moment conditions for η can be expressed in terms of the characteristic triplet of (U, L). We
omit further details here.

3.3. Convergence of E (U )t and integrals involving it

In the case ΠU ({−1}) = 0 the characterisation of the existence of stationary solutions in
Section 4 will be achieved in terms of the almost sure convergence of


∞

0 E (U )s− dLs and
∞

0 [E (U )s−]
−1 dηs . So, finally in this section, we obtain necessary and sufficient conditions

for convergence of these integrals, which are also interesting in their own right.
We need also necessary and sufficient conditions for a Lévy process to drift to ±∞ in terms

of its characteristic triplet. The following is a reformulation of a result of Doney and Maller (see
Theorem 4.4 in [3]) for the process U in terms of the characteristics of U . In the case when
E |U1| = ∞, it describes in particular how the large time behaviour of U is determined by the
behaviour of ΠU around −1 and for large values.

Theorem 3.5. Let U be a non-zero Lévy process with ΠU ({−1}) = 0, let U be defined by (3.9),
and recall (3.11).
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(a) The following are equivalent:
(i) E (U )t converges almost surely to 0 as t → ∞.

(ii) Ut converges almost surely to ∞ as t → ∞.
(iii) 0 < EU1 ≤ E |U1| < ∞, or


(−3/2,−1/2)

| log |1 + x ||ΠU (dx) = ∞ and∫
R\[−e,e]

log |x |ΠU (dx)

1 +
 1/e

1/|x |
ΠU ((−1 − z, −1 + z))z−1dz

< ∞.

(b) The following are equivalent:
(i) [E (U )t ]

−1 converges almost surely to 0 as t → ∞.
(ii) Ut converges almost surely to −∞ as t → ∞.

(iii) 0 < −EU1 ≤ E |U1| < ∞, or

|x |≥e log |x |ΠU (dx) = ∞ and∫

(−1−e−1,−1+e−1)

− log |1 + x |ΠU (dx)

1 +
 1/|1+x |

e ΠU (R \ [1 − z, z − 1])z−1dz
< ∞.

(c) If none of the conditions in (a) or (b) are satisfied, then U oscillates, equivalently,

0 = lim inf
t→∞

|E (U )t | < lim sup
t→∞

|E (U )t | = +∞.

Proof of Theorem 3.5. Let us prove (a). The equivalence of (i) and (ii) is clear from (3.11).
Further, by Theorem 4.4 in [3], Ut converges almost surely to ∞ if and only if 0 < EU1 ≤

E |U1| < ∞, or

lim
x→∞

A+U (x) = ∞ and
∫

−1

−∞

|x |ΠU (dx)

A+U (|x |)
dx < ∞,

where

A+U (x) := 1 +

∫ x

1
ΠU ((y, ∞)) dy, x ≥ 1.

Using ΠU = X (ΠU ) (cf. (3.12)), it is then easy to see that this is equivalent to the condition (iii).
The proof of (b) is similar, and assertion (c) is well known (e.g. [18], Theorem 48.1). �

The following is a version for the stochastic exponential of Theorem 2 of [4], who characterised
almost sure convergence of the integral


∞

0 e−ζs−dχs for a bivariate Lévy process (ζ, χ).

Theorem 3.6. Let (U, L) be a bivariate Lévy process such that ΠU ({−1}) = 0. Then the
following are equivalent:

(i)
 t

0 E (U )s−dLs converges almost surely to a finite random variable as t → ∞.
(ii)

 t
0 E (U )s−dLs converges in distribution to a finite random variable as t → ∞.

(iii) E (U )t converges almost surely to 0 as t → ∞ and

IU,L :=

∫
R\[−e,e]

log |y|ΠL(dy)

1 +
 1/e

1/|y|
ΠU ((−1 − z, −1 + z))z−1dz

< ∞. (3.18)

In the case of divergence, we have: if limt→∞ E (U )t = 0 a.s. but IU,L = +∞, then∫
(0,t]

E (U )s−dLs

 P
→ ∞, t → ∞, (3.19)
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and if E (U )t does not tend to 0 a.s. as t → ∞, then (3.19) holds or there exists k ∈ R \ {0} such
that

P

∫
(0,t]

E (U )s−dLs = k(1 − E (U )t ) ∀t ≥ 0


= 1. (3.20)

Proof of Theorem 3.6. Using E (U )t = (−1)Nt e−Ut , it follows in complete analogy to the proof
of Erickson and Maller [4] that

 t
0 (−1)Ns−e−Us− dLs converges almost surely to a finite random

variable if and only if Ut converges almost surely to +∞ as t → ∞ and∫
R\[−e,e]


log |y|

1 +
 log |y|

1 ΠU ((x, ∞)) dx


ΠL(dy) < ∞,

which by Lemma 3.4 can be seen to be equivalent to (iii). The remaining assertions follow like
in [4]. �

Corollary 3.7. Let (U, L) be a bivariate Lévy process such that ΠU ({−1}) = 0. Let (W, η) be
defined by (3.10) and (2.2). Then the following are equivalent:

(i)
 t

0 [E (U )s−]
−1dηs converges almost surely to a finite random variable as t → ∞.

(ii)
 t

0 [E (U )s−]
−1dηs converges in distribution to a finite random variable as t → ∞.

(iii) [E (U )t ]
−1 converges almost surely to 0 as t → ∞ and IW,η < ∞, where IW,η is defined

similarly to (3.18), with ΠL being replaced by Πη and ΠU by ΠW .

Proof. This is an immediate consequence of Theorem 3.6 since [E (U )t ]
−1

= E (W )t for every
t ≥ 0 by (3.15). �

4. Proofs of main results

Proof of Theorem 2.1. (a) Suppose that Ut → ∞ a.s. as t → ∞. Then E (U )t V0 converges
a.s. to 0. Thus if a stationary solution (Vt )t≥0 exists, E (U )t


(0,t][E (U )s−]

−1dηs tends to V0 in

distribution as t → ∞. By (3.2) this means that

(0,t] E (U )s−dLs

D
→ V0 as t → ∞ and hence

∞

0 E (U )s− dLs converges almost surely by Theorem 3.6. Let n ∈ N and h1, . . . , hn ≥ 0. Since
limt→∞ E (U )t = 0 a.s., and since

(Vh1 , . . . , Vhn )
D
= (Vt+h1 , . . . , Vt+hn ), t ≥ 0,

an application of Slutsky’s Lemma shows that (Vh1 , . . . , Vhn ) has the same distribution as the
distributional limit as t → ∞ of

E (U )t+h1

∫ t+h1

0
[E (U )s−]

−1 dηs, . . . , E (U )t+hn

∫ t+hn

0
[E (U )s−]

−1 dηs


.

This does not depend on V0. Hence any two stationary solutions have the same finite dimensional
distributions and hence the same distributions when viewed as random elements in D[0, ∞).

Conversely, suppose that


∞

0 E (U )s− dLs converges almost surely to a finite random variable
and take V0 independent of (U, L) and with the same distribution as


∞

0 E (U )s− dLs . Then, by
(3.2), Vt converges in distribution to V0 as t → ∞, since limt→∞ E (U )t = 0. Together with
Lemma 3.3 this shows that

Vt = At−h,t Vt−h + Bt−h,t
D
→ A0,h V0 + B0,h = Vh, t → ∞,
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for every h ≥ 0. Since also Vt
D
→ V0 as t → ∞ it follows that Vh

D
= V0. Since (Vt )t≥0 is a

Markov process by Lemma 3.3, this implies strict stationarity of (Vt )t≥0.

(b) Suppose that Ut → −∞ and hence [E (U )t ]
−1

→ 0 as t → ∞. Then if (Vt )t≥0 is a strictly
stationary solution, it follows that

V0 +

∫
(0,t]

[E (U )s−]
−1dηs = [E (U )t ]

−1Vt
P
→ 0, t → ∞.

Hence −


∞

0 [E (U )s−]
−1 dηs converges almost surely to V0 by Corollary 3.7, and this immedi-

ately yields Vt = −E (U )t

(t,∞)

[E (U )s−]
−1dηs a.s.

Conversely, if

(0,∞)

[E (U )s−]
−1dηs converges a.s., let V0 := −


(0,∞)

[E (U )s−]
−1dηs . Then

Vt = −E (U )t

∫
(t,∞)

[E (U )s−]
−1dηs =

∫
(t,∞)

(−1)(Ns−−Nt )e
Us−−Ut dηs, t ≥ 0,

which is strictly stationary since (N , U , η), as a Lévy process, has stationary increments.

(c) Suppose that Ut oscillates and let (Vt )t≥0 be a strictly stationary solution of (2.3). By
Theorem 3.6 this implies that (3.19) or (3.20) must hold. Suppose first that (3.19) holds. To-

gether with (3.2) this gives |E (U )t

(0,t][E (U )s−]

−1dηs |
P
−→ ∞ as t → ∞. Since Vt is strictly

stationary this and (2.3) imply that |V0 E (U )t | and thus |E (U )t | tend to ∞ in probability, too.
Hence V0 +


(0,t][E (U )s−]

−1dηs = [E (U )t ]
−1Vt converges to 0 in probability, and hence in

distribution, so

(0,t][E (U )s−]

−1dηs
D
→ −V0 as t → ∞, contradicting Corollary 3.7 because

[E (U )t ]
−1 does not converge to 0. Hence (3.19) cannot occur.

Now suppose that (3.20) holds, i.e. there is a constant k ∈ R \ {0} such that for all t > 0
we have


(0,t] E (U )s−dLs = k(1 − E (U )t ) a.s., or equivalently 1 +


(0,t] E (U )s−d(−Ls/k) =

E (U )t a.s. But since the unique adapted càdlàg solution to the stochastic differential equation
1 +


(0,t] Zs−d(−Ls/k) = Z t is given by Z t = E (−L/k)t , we see that (3.20) is equivalent to

E (U ) = E (−L/k) and hence to U = −L/k. From (2.2) and (3.10), this implies

ηt = −kUt +

−
0<s≤t

k1U 2
s

1 + 1Us
+ ktσ 2

U = kWt ,

so ∫
(0,t]

[E (U )s−]
−1dηs = k

∫
(0,t]

E (W )s−dWs = k(−1 + E (W )t )

= (−k)(1 − [E (U )t ]
−1) a.s.

by (3.15). We conclude that

Vt = E (U )t

∫
(0,t]

[E (U )s−]
−1dηs + V0


= E (U )t (V0 − k) + k, t ≥ 0, (4.1)

so Vt − k = E (U )t (V0 − k) a.s. Since Vt was assumed to be strictly stationary this yields

|V0 − k|
D
= |E (U )t ||V0 − k| = e−Ut |V0 − k|, because E (U )t = (−1)Nt e−Ut . Since |Ut |

P
−→ ∞,

we get V0 − k = 0 a.s. and hence Vt = k a.s. for all t ≥ 0. So V is indistinguishable from the
constant process, since it has càdlàg paths.

Conversely, if there is a k ∈ R \ {0} such that U = −L/k, and V0 := k, then it follows from
(4.1) that Vt = k for all t ≥ 0, which is a strictly stationary solution. �
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Proof of Theorem 2.2. (a) Choose V0 to be independent of (U, L) with V0
D
= Zτ . Then (Vt )t≥0

is a Markov process by Lemma 3.3; hence it suffices to show that Vt
d
= V0 for every t > 0. Fix

t > 0 and for k ∈ N0 let pk := P(K (t) = k) and let Tk be the time of the kth jump of size −1 of
U . Then by (2.7) we get, for x ∈ R,

P(Vt ≤ x) = p0 P


E (U )t


V0 +

∫
(0,t]

[E (U )s−]
−1dηs


≤ x |K (t) = 0


+

−
k≥1

pk P


E (U )(Tk ,t]


1LTk +

∫
(Tk ,t]

[E (U )(Tk ,s)]
−1dηs


≤ x |K (t) = k


=: A(x) + B(x), say.

By (2.4), U = U and η =η on {K (t) = 0}. Thus

A(x) = p0 P


E (U )t


V0 +

∫
(0,t]

[E (U )s−]
−1dηs


≤ x


.

Since τ and (U ,η) are independent, an application of the strong Markov property to the Lévy
process (K , U ,η), where K is a Poisson process with parameter λ, independent of (U ,η) and
first jump time τ , shows that (Ut+τ ,ηt+τ )t≥0 is a Lévy process with the same distribution as

(Ut ,ηt )t≥0, independent of Zτ and V0. Together with V0
d
= Zτ this shows

E (U )t


V0 +

∫
(0,t]

[E (U )s−]
−1dηs


D
= E (U )(τ,t+τ ]


Zτ +

∫
(τ,t+τ ]

[E (U )(τ,s)]
−1dηs


.

Hence we obtain for A(x), recalling that p0 = e−λt ,

p0 P


E (U )(τ,t+τ ]


E (U )τ


Y +

∫
(0,τ ]

[E (U )s−]
−1dηs


+

∫
(τ,t+τ ]

[E (U )(τ,s)]
−1dηs


≤ x


= p0 P


E (U )t+τ


Y +

∫
(0,t+τ ]

[E (U )s−]
−1dηs


≤ x


= p0 P(Z t+τ ≤ x)

= e−λt
∫

(0,∞)

P(Z t+y ≤ x) dPτ (y)

= λ

∫
(t,∞)

P(Z y ≤ x)e−λydy.

For B(x), recall that the times of jumps of size −1 on an interval [0, t] of the Lévy process
U given the value of K (t) = k have the same distribution as the order statistics of k uniformly
distributed random variables on [0, t]. In particular, P(Tk ≤ y|K (t) = k) = (y/t)k for all
0 ≤ y ≤ t . Defining a random variable υ(k) with this distribution, independent of (U, L), we
conclude, recalling that pk = e−λt (λt)k/k!,
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B(x) =

−
k≥1

pk P


E (U )(Tk ,t]


Y +

∫
(Tk ,t]

[E (U )(Tk ,s)]
−1dηs


≤ x |K (t) = k


=

−
k≥1

pk P


E (U )t−υ(k)


Y +

∫
(0,t−υ(k)]

[E (U )s−]
−1dηs


≤ x


=

−
k≥1

pk P(Z t−υ(k) ≤ x)

=

−
k≥1

e−λt (λt)k

k!

∫
(0,t]

P(Z t−y ≤ x)d(y/t)k

= λe−λt
∫

(0,t]
P(Z t−y ≤ x)eλydy

= λ

∫
(0,t]

P(Z y ≤ x)e−λydy.

Summing A(x) and B(x) we obtain

P(Vt ≤ x) = λ

∫
(0,∞)

P(Z y ≤ x)e−λydy = P(Zτ ≤ x) = P(V0 ≤ x),

so Vt
d
= V0, giving strict stationarity of (Vt )t≥0.

(b) Let (Vt )t≥0 be a strictly stationary solution of (2.7). Then for any n ∈ N and h1, . . . , hn ≥ 0
we have

(Vt+h1 , . . . , Vt+hn )
D
→ (Vh1 , . . . , Vhn ), t → ∞,

and since K (t) → +∞ a.s. as t → ∞, it can be seen from (2.7) that the last expression does
not depend on V0. Hence any two strictly stationary solutions have the same finite dimensional
distributions and hence are equal as random elements in D[0, ∞). �

Proof of Corollary 2.3. To show sufficiency of each of the conditions (i)–(iii), it is enough to
suppose ΠU ({−1}) = 0, since otherwise a strictly stationary solution exists by Theorem 2.2.
Then by Theorem 3.6 and Corollary 3.7, convergence of


∞

0 E (U )s− dLs and that of
∞

0 [E (U )s−]
−1 dηs imply limt→∞ E (U )t = 0 a.s. and limt→∞[E (U )t ]

−1
= 0, respectively, so

Theorem 2.1(a), (b) shows sufficiency of conditions (ii) and (iii). By Theorem 2.1(c), condition
(i) is sufficient if Û oscillates, but its proof shows that (i) is sufficient whenever ΠU ({−1}) = 0,
since U = −L/k clearly implies Eq. (4.1) by the same argument. The uniqueness assertion is
clear from Theorems 2.1 and 2.2.

To see that the existence of a strictly stationary solution implies at least one of the conditions
(i)–(iii), observe that this is clear from Theorem 2.1 if ΠU ({−1}) = 0. In the case that
ΠU ({−1}) > 0, denote by T1 the time of the first jump of U of size −1. Then T1 is finite
almost surely and it is the case that E (U )t = 0 for t ≥ T1. Hence the integral


∞

0 E (U )s− dLs
converges almost surely, which is condition (ii). �

Proof of Corollary 2.4. In the following we denote the quantities corresponding to (U (n), L(n))

as needed in Theorem 2.2(a) byη(n), T (n)
1 , τ (n), etc. Observe that U (n)

= U andη(n)
= η. Further

observe that convergence of

(0,∞)

E (U )s− dLs implies that E (U )t → 0 a.s. as t → ∞ by
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Theorem 3.6. But since the distribution of 1L(n)

T (n)
1

is σ for each n, it follows that E (U )τ (n)Y (n) P
→

0 as n → ∞ since λn → 0. Next, observe that

E (U )τ (n)

∫
(0,τ (n)]

[E (U )s−]
−1 dηs

D
=

∫
(0,τ (n)]

E (U )s− dLs,

which follows from (3.2) by conditioning on τ (n)
= t and using that τ (n) is independent of

(U, L). This, together with E (U )τ (n)Y (n) P
→ 0 implies that

V (n)
0

D
= Z (n)

τ (n)

D
→

∫
(0,∞)

E (U )s− dLs
D
= V0, n → ∞,

so the marginal stationary distributions converge weakly. By Skorokhod’s theorem we can then
assume that V (n)

0 and V0 are additionally chosen such that V (n)
0 → V0 a.s. as n → ∞, since

this does not alter the distributions of the processes V (n) and V , respectively, and we are only

concerned with weak convergence. But since λn → 0 we have K (n)
t

P
→ 0 as n → ∞ for fixed

t ≥ 0, and hence it follows from (2.3) and (2.7), for any t > 0 and ε > 0, that

lim
n→∞

P( sup
0≤s≤t

|Vs − V (n)
s | > ε) = 0,

giving weak convergence of V (n) to V in the J1-Skorokhod topology (cf. [8], Lemma VI.3.31,
p. 352). �

5. Filtration expansions

Having determined all strictly stationary solutions of (2.7), it is natural to ask whether the
strictly stationary process (Vt )t≥0 still satisfies (3.3) for the smallest filtration H = (Ht )t≥0
containing F, satisfying the usual hypotheses and which is such that V0 is H0-measurable. In
other words, we pose the question: does U at least remain a semimartingale with respect to H?

In the causal cases described in Theorem 2.1(a), (c) and Theorem 2.2, this is indeed the case,
as a consequence of Jacod’s criterion ([6], Théorème (1.1); see also [17], Corollary 1 to Theorem
VI.11). For the non-causal cases, this is not at all evident. Clearly, if U is of bounded variation,
then U remains an H-semimartingale, but the general case is not clear. The following theorem
presents a sufficient condition for all F-semimartingales to remain H-semimartingales. The proof
is along the lines of Theorem 3.6 of [7], who considered the case Ut = λt with λ > 0 below, in
which case the distribution of V0 is either degenerate, or absolutely continuous.

Theorem 5.1. Let (U, L) be a bivariate Lévy process such that ΠU ({−1}) = 0 and suppose that
limt→∞[E (U )t ]

−1
= 0 a.s. and that V0 := −


(0,∞)

[E (U )s−]
−1 dηs converges a.s., where η is

defined by (2.2). Denote by Vt = −

(t,∞)

[E (U )(t,s)]
−1 dηs , t ≥ 0, as in Theorem 2.1(b), the

unique solution of (2.3), and suppose that the distribution of V0 is absolutely continuous or a
Dirac measure. Then every F-semimartingale is also an H-semimartingale. In particular, U and
L are H-semimartingales and (Vt )t≥0 solves (1.2) when considered as an SDE with respect to
the filtration H and is an H-semimartingale.

Proof of Theorem 5.1. First observe that

V0 = −

∫
(0,∞)

[E (U )s−]
−1 dηs = −

∫
(0,t]

[E (U )s−]
−1 dηs + [E (U )t ]

−1Vt , (5.1)
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so (Vt )t≥0 is clearly adapted to H, and if V0 is a constant random variable, then F = H
and there is nothing to prove. So suppose that the law µ of V0 is absolutely continuous.
Since


(0,t][E (U )s−]

−1 dηs and [E (U )t ]
−1 are measurable with respect to Ft but Vt =

−

(t,∞)

[E (U )(s,t)]
−1 dηs is independent of Ft , and has distribution µ by stationarity of V , (5.1)

shows that the regular conditional distribution of V0 given Ft is given by

P(V0 ∈ B|Ft )(ω) = µ(E (U )t (ω)B + E (U )t (ω)

∫
(0,t]

[E (U )s−]
−1 dηs(ω))

for every Borel set B in R and ω ∈ Ω . Hence if the Lebesgue measure of B is zero, the Lebesgue
measure of E (U )t (ω)B + E (U )t (ω)


(0,t][E (U )s−]

−1 dηs(ω) is zero as well, and since µ is
absolutely continuous it follows that P(V0 ∈ B|Ft )(ω) = 0. But this means that the regular
conditional distribution of V0 given Ft is almost surely absolutely continuous, and hence by
Jacod’s criterion ([6], Théorème (1.1); see also [17], Theorem VI.10) every F-semimartingale
is an H-semimartingale. That then also V is an H-semimartingale follows from Theorem V.7 in
[17]. �

The problem of characterising when the law µ of V0 := −


∞

0 [E (U )s−]
−1 dηs appearing in

Theorem 5.1 is absolutely continuous is an open question. As pointed out by Watanabe [19], it
follows from Theorem 1.3 in [1] that µ is either absolutely continuous, continuous singular, or a
Dirac measure, i.e. a pure types theorem holds for µ. Watanabe’s proof is based on the fact that,

by (5.1), V0
D
= Vt

D
= µ satisfies a distributional fixed point equation Vt

D
= V0 = Mt Vt + Qt ,

with Vt being independent of (Mt , Qt ) and P(Mt = 0) = 0, for which Theorem 1.3 in [1]
applies. The same pure types theorem holds by the same argument for the causal solutions of
Theorem 2.1(a).

While it follows from the arguments of Theorem 2.2 in [2] that V0 as defined in
Theorem 2.1(b) is constant if and only if U = kL for some constant k ≠ 0 (or equivalently
that W = −kη as seen in the proof of Theorem 2.1(c)), the question of when this law is
absolutely continuous or continuous singular is much more involved. Lindner and Sato [15]
investigate the distribution −


(0,∞)

[E (U )s−]
−1 dηs when Ut = (c−1

−1)Rt for a constant c > 1
and independent Poisson processes R and η, showing that the distribution can be absolutely
continuous or continuous singular, depending in an intrinsic way on c and the ratio of the rates
of the Poisson processes R and η.

We conclude by mentioning that if ΠU ((−∞, −1]) = 0 and ΠU ≠ 0, U and L
are independent with L being of bounded variation with non-zero drift term, and V0 =

−


∞

0 [E (U )s−]
−1 dηs converges almost surely, then it follows from Theorem 3.9 in [2] that V0

is absolutely continuous. Further examples for absolutely continuous V0 with independent U and
L can be found in [5], covering also cases when U is Brownian motion with drift.
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