期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:121
Transient behavior of the Halfin-Whitt diffusion
Article
van Leeuwaarden, Johan S. H.1,2  Knessl, Charles3 
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[2] EURANDOM, NL-5600 MB Eindhoven, Netherlands
[3] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
关键词: GI/M/s queue;    M/M/s queue;    Halfin-Whitt regime;    Queues in heavy traffic;    Diffusion;    Asymptotic analysis;   
DOI  :  10.1016/j.spa.2011.03.007
来源: Elsevier
PDF
【 摘 要 】

We consider the heavy-traffic approximation to the GI/M/s queueing system in the Halfin-Whitt regime, where both the number of servers s and the arrival rate lambda grow large (taking the service rate as unity), with lambda = s - beta root s and beta some constant. In this asymptotic regime, the queue length process can be approximated by a diffusion process that behaves like a Brownian motion with drift above zero and like an Ornstein-Uhlenbeck process below zero. We analyze the transient behavior of this hybrid diffusion process, including the transient density, approach to equilibrium, and spectral properties. The transient behavior is shown to depend on whether beta is smaller or larger than the critical value beta(*) approximate to 1.85722, which confirms the recent result of Gamarnik and Goldberg (2008) [8]. (C) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2011_03_007.pdf 325KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次