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Abstract

We consider the heavy-traffic approximation to the G I/M/s queueing system in the Halfin–Whitt
regime, where both the number of servers s and the arrival rate λ grow large (taking the service rate as
unity), with λ = s − β

√
s and β some constant. In this asymptotic regime, the queue length process can be

approximated by a diffusion process that behaves like a Brownian motion with drift above zero and like an
Ornstein–Uhlenbeck process below zero. We analyze the transient behavior of this hybrid diffusion process,
including the transient density, approach to equilibrium, and spectral properties. The transient behavior is
shown to depend on whether β is smaller or larger than the critical value β∗ ≈ 1.85722, which confirms
the recent result of Gamarnik and Goldberg (2008) [8].
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1. Introduction

Halfin and Whitt [13] introduced in their 1981 paper a new heavy-traffic limit theorem for
the G I/M/s system. They demonstrated how under certain conditions a sequence of normalized
queue-length processes converges to a process that behaves like a Brownian motion with drift
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above zero and like an Ornstein–Uhlenbeck process below zero. We refer to this hybrid diffusion
process as the Halfin–Whitt diffusion. Our concern is with the transient behavior of this diffusion.

What is nowadays known as the Halfin–Whitt regime refers to the scaling of the arrival rate
λ and the numbers of servers s such that, while both λ and s increase toward infinity, the traffic
intensity ρ = λ/s approaches one and

(1 − ρ)
√

s → β, β ∈ (−∞, ∞). (1.1)

This type of scaling was already proposed by Erlang (see [4]) for the M/M/s/s system, and by
Pollaczek [21], p. 28, for the M/D/s system. Halfin and Whitt [13] presented a formal limit
theorem for the G I/M/s system. Then, some two decades later, the regime got immensely
popular due to its application to call centers (see [3,10,14]). The scaling (1.1) combines large
capacity with high utilization such that the probability of delay converges to a non-degenerate
limit away from both zero and one; cf. (2.28). Limit theorems for other, more general systems
were obtained in [9,11,15,19,20,22]. For delay systems like M/D/s and G I/M/s one should
impose β ∈ (0, ∞) to guarantee stability.

In [13] it is established that by setting the traffic intensity ρ = 1 − β/
√

s, β ∈ (0, ∞),
the number of customers in the M/M/s system can be roughly expressed as s +

√
s X (t) for s

sufficiently large and (X (t))t≥0 the Halfin–Whitt diffusion. It is further shown that properties of
the limiting diffusion process for the G I/M/s system can be obtained from (X (t))t≥0 as well.
The boundary between the Brownian motion and the Ornstein–Uhlenbeck process can be thought
of as the number of servers, and (X (t))t≥0 will keep fluctuating between these two regions. The
process mimics a single server queue above zero, and an infinite server queue below zero, for
which Brownian motion and the Ornstein–Uhlenbeck process are indeed the respective heavy-
traffic limits. As β increases, capacity grows and the Halfin–Whitt diffusion will spend more
time below zero.

The diffusion process (X (t))t≥0 can thus be employed to obtain simple approximations for
the system’s behavior. The steady-state properties of the diffusion are well-studied, but less is
known about the transient behavior. Transient results enhance our understanding of how the
G I/M/s system behaves over various time and space scales. Results for the mean hitting time
were presented in Maglaras and Zeevi [19]. We shall derive explicit results for the transient
density of the diffusion, both exact and asymptotic.

We first derive the Laplace transform over time, which leads to a representation of the
density as a contour integral, from which a spectral expansion may be obtained by analyzing the
complex singularities of the integrand. The spectral expansion can be interpreted as a large-time
expansion in which the first term, corresponding to the singularity at zero, gives the steady-state
density (which exists if β > 0). The other singularities of the Laplace transform provide finite-
time corrections to the steady-state density. This facilitates us to study how, and in what time
(relaxation time), the process converges to its steady state.

The approach to equilibrium is governed by the singularity in the left half-plane with the
largest real part. This dominant singularity turns out to be either a branch point or a pole,
depending on whether β is smaller or larger than the critical value β∗ ≈ 1.85722. This confirms
the recent result of Gamarnik and Goldberg [8] who identified β∗ using the framework of Karlin
and McGregor [16] for birth–death processes, and the result of van Doorn [24] on the spectral
gap of the M/M/s queue. We shall also show how the branch point and the pole each give rise
to different large-time asymptotics for the density. The main results are presented in Section 2
and the proofs are presented in Section 3.
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2. Main results

Halfin and Whitt [13] considered the M/M/s queue with customers arriving according to a
Poisson process and requiring service at rate µ. Letting the arrival rate λs increase with s so
that ρs

= λs/(sµ), they obtained the scaling limit of the sequence of normalized processes
X s(t) = (Qs(t) − s)/

√
s with Qs(t) the number of customers in the system at time t . Let

X s
= (X s(t))t≥0 and “⇒” denote weak convergence in the space D[0, ∞).

Theorem 1 (Halfin and Whitt [13]). If
√

s(1 − ρs) → β ∈ (0, ∞), and X s(0) ⇒ c ∈ R, then
X s

→ X, where the limit X is the diffusion process with infinitesimal drift function

C(x) =


−µβ, x > 0,

−µx − µβ, x < 0,
(2.1)

and infinitesimal variance B(x) = 2µ.

We set µ = 1 without loss of generality. The Halfin–Whitt diffusion X = (X (t))t≥0 is thus a
Markov process on the real line with continuous paths and density p = p(x, t) that satisfies the
forward Kolmogorov equation

∂

∂t
p(x, t) = −

∂

∂x
[C(x)p(x, t)] +

1
2

∂2

∂x2 [B(x)p(x, t)]. (2.2)

There is the initial condition p(x, 0) = δ(x − x0) (the Dirac function), the interface conditions
p(0+, t) = p(0−, t) and px (0+, t) = px (0−, t), and the boundary conditions p(∞, t) =

p(−∞, t) = 0.
This diffusion process applies directly to the M/M/s system. For the G I/M/s system we

would need to first take the diffusion coefficient B(x) = (1 + c2), with c2 > 0, and scale x so as
to make B(x) = 2, and then scale β by the same factor as x (see [13], Theorem 4).

2.1. Laplace transforms

Define the Laplace transform over time p̂ by

p̂(x; θ) =

∫
∞

0
e−θ t p(x, t)dt, ℜ(θ) > 0. (2.3)

Let

Rβ(θ) =
D′

−θ (−β)

D−θ (−β)
(2.4)

with Dν(z) the parabolic cylinder function with index ν and argument z, which may be defined,
for example, by the integrals

Dν(z) =
e−z2/4

Γ (−ν)

∫
∞

0
e−zue−u2/2u−ν−1du, ℜ(ν) < 0, (2.5)

Dν(z) =
ez2/4

i
√

2π

∫
C

uνeu2/2e−uzdu. (2.6)

Here, Γ (·) is the Gamma function, and the contour C in the second integral is a vertical Bromwich
contour in the half-plane ℜ(u) > 0. It is well known that Dν(z) is an entire function of both
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index ν and argument z, and various properties of Dν(z) are given in [1], Chapter 19, and [12],
p. 1092–1095.

Below we give expressions for p̂, where we must distinguish the cases x0 > 0 and x0 < 0.
These are derived in Section 3.1.

Theorem 2. Consider x0 > 0.

(i) For x > 0,

p̂(x; θ) =
e

1
2 β(x0−x)
β2 + 4θ

(e−|x−x0|
√

θ+β2/4
− e−(x+x0)

√
θ+β2/4)

+
e

1
2 β(x0−x)e−(x+x0)

√
θ+β2/4

θ + β2/4 − Rβ(θ)
. (2.7)

(ii) For x < 0,

p̂(x; θ) = e−
1
4 x2

e−
1
2 βx D−θ (−β − x)

D−θ (−β)

e
1
2 x0β−x0

√
θ+β2/4

θ + β2/4 − Rβ(θ)
. (2.8)

Theorem 3. Consider x0 < 0.

(i) For x > 0,

p̂(x; θ) = e
1
4 x2

0 e
1
2 βx0

D−θ (−β − x0)

D−θ (−β)

e−
1
2 xβ−x

√
θ+β2/4

θ + β2/4 − Rβ(θ)
. (2.9)

(ii) For x < 0,

p̂(x; θ) = A(θ)e
1
4 (x2

0−x2)e
1
2 β(x0−x) D−θ (−β − x)

+ 1{x0 < x < 0}e
1
4 (x2

0−x2)e
1
2 β(x0−x) Γ (θ)

√
2π

× [D−θ (−β − x0)D−θ (β + x) − D−θ (β + x0)D−θ (−β − x)],

(2.10)

where

A(θ) =
Γ (θ)
√

2π

×


D−θ (β + x0) −

D−θ (β)D−θ (−β − x0)

D−θ (−β)


θ + β2/4 + R−β(θ)
θ + β2/4 − Rβ(θ)


. (2.11)

In (2.10) 1{·} is the indicator function. Note that if x0 → 0+ the first term in the right-hand
side in (2.7) disappears, and D−θ (−β − x0)/D−θ (−β) → 1 as x0 → 0− in (2.9). Thus (2.7)
and (2.9) give the same result if x0 → 0. If x < 0 we have 1{x0 < x < 0} → 0 as x0 → 0−, so
the second term in the right-hand side of (2.10) disappears. Also as x0 → 0−, (2.11) shows that
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A(θ) →
Γ (θ)
√

2π
D−θ (β)


1 −


θ + β2/4 + R−β(θ)
θ + β2/4 − Rβ(θ)



=
Γ (θ)
√

2π

D−θ (β)
θ + β2/4 − Rβ(θ)

[−R−β(θ) − R−β(θ)]

=
1

D−θ (−β)

1
θ + β2/4 − Rβ(θ)

, (2.12)

where we used (2.4) and (2.14) below. Thus (2.8) and (2.10) also agree if x0 → 0.

We can rewrite (2.10) in the following alternate form:

p̂(x; θ) =
Γ (θ)
√

2π
e

1
4 (x2

0−x2)e
1
2 β(x0−x)

[
D−θ (β + x>)D−θ (−β − x<)

−
D−θ (β)

D−θ (−β)
D−θ (−β − x)D−θ (−β − x0)

]
+ e

1
4 (x2

0−x2)e
1
2 β(x0−x) D−θ (−β − x)D−θ (−β − x0)

D2
−θ (−β)[


θ + β2/4 − Rβ(θ)]

, (2.13)

where x> = max{x, x0} and x< = min{x, x0}. The equivalence of (2.10) and (2.13) follows
from the Wronskian identity (this may be shown directly using (2.5) and (2.6))

−

√
2π

Γ (θ)
= D−θ (z)D′

−θ (−z) + D−θ (−z)D′
−θ (z), (2.14)

which is independent of z.

While it does not seem possible to invert the Laplace transforms in Theorems 2 and 3 to get
the density p(x, t) explicitly, parts of p̂ can be inverted. For x0 > 0 we note that the part of p̂
that is in the first line in the right-hand side of (2.7) inverts to

1

2
√

π t
e−

1
4 β2t e

1
2 β(x0−x)(e−

1
4 (x−x0)

2/t
− e−

1
4 (x+x0)

2/t ), (2.15)

which is similar to the density for a Brownian motion with absorption at x = 0. The inversion
of the second part of p̂ in (2.7) seems less straightforward. Of course, the full process is not
absorbed at x = 0, but rather crosses this interface with a certain reflection law.

For x0 < 0 we can invert the term in the right-hand side of (2.13) that is proportional to
D−θ (β + x>)D−θ (−β − x<). Since Γ (θ) has simple poles at θ = −n, n = 0, 1, 2, . . ., with
residues (−1)n/n!, and D−θ (·) is an entire function of θ , the first term inverts to

e
1
4 (x2

0−x2)e
1
2 β(x0−x)

∞−
n=0

Dn(−β − x0)Dn(β + x)
(−1)ne−nt

n!
√

2π
. (2.16)

This corresponds to the transient solution of the standard free space Ornstein–Uhlenbeck process,
starting at x0 at time t = 0 (see Section 2.5). The remaining two terms in (2.13) represent
the effects of the interface at x = 0, where the form of the drift changes. As t → ∞ (2.16)
approaches exp(−(x + β)2/2)/

√
2π , as only the term n = 0 remains, and D0(z) = e−z2/4.
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2.2. Relaxation time

In queueing theory, the relaxation time is a notion that measures the time it takes for the
system to approach its steady-state behavior. There are various ways to define relaxation time,
but we use the definition

τ = inf{T : p(x, t) − p(x, ∞) = O(e−t/T )}, (2.17)

in the spirit of [2,5,18]. The Laplace transform p̂ is analytic in the entire θ -plane, except for
singularities in the range ℜ(θ) ≤ 0. Hence, the asymptotic behavior of p(x, t) (for large t) is
determined by the singularity θ̂ closest to the imaginary axis. In fact, from (2.17) it follows that

τ−1
= −ℜ(θ̂). (2.18)

The dominant singularity θ̂ will either be the branch point θB = −
1
4β2 or the largest negative

solution θP to

ϕβ(θ) :=


θ + β2/4 − Rβ(θ) = 0. (2.19)

We shall study later in more detail all solutions to (2.19) (see Sections 2.5 and 3.3). In partic-
ular we will enumerate the number of solutions in the range ℜ(θ) ∈ (−β2/4, 0) for any β > 0.
We have the following result.

Theorem 4. Let β∗ represent the smallest positive real solution to

D′

β2/4(−β) = 0. (2.20)

The dominant singularity θ̂ of the Laplace transform p̂(x; θ) is then given by

θ̂ =


θB = −

1
4
β2, 0 < β ≤ β∗,

θP , β ≥ β∗.
(2.21)

The numerical value of β∗ is 1.85722 . . ..

This completely determines the relaxation time as defined in (2.17). More detailed information
on the distance to steady state can be obtained from investigating p̂ in the vicinity of the dominant
singularity; see Theorems 5 and 6. When β ≤ 0 the process is transient and the large-time
behavior is still determined by θB .

Using asymptotic results in [1], Chapter 19, we have the estimate, for β → ∞,

D′

β2/4(−β) ∼


3
2

1/6 1
√

π
Γ (2/3)


β

2

β2/4

e−β2/8β2/3 sin(πβ2/4 + π/6). (2.22)

This expression shows that D′

β2/4
(−β) has an infinite number of sign changes as β increases

toward infinity, and thus (2.20) has infinitely many roots, which we denote by β∗,N , N = 1, 2,

3, . . . with β∗,1 = β∗.
Using the recurrence relation (see [12], p. 1094)

D′
p(z) = −

1
2

zDp(z) + pDp−1(z) (2.23)
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with p = β2/4 and z = −β it follows that (2.20) is equivalent to

−2Dβ2/4(−β)

β Dβ2/4−1(−β)
= 1. (2.24)

Using the integral representation in [12], p. 1094, this equation is equivalent to

2
β


∞

0 x1−β2/4e−(β−x)2/2dx
∞

0 x−β2/4e−(β−x)2/2dx
= 1, β2 < 4, (2.25)

which is the expression derived by Gamarnik and Goldberg [8]. To see the equivalence we rewrite
the integral in the numerator of (2.25) and integrate by parts, which yields∫

∞

0
x−β2/4(x − β + β)e−(β−x)2/2dx = β

∫
∞

0
x−β2/4e−(β−x)2/2dx

−

∫
∞

0
x−β2/4d[e−(β−x)2/2

]

=

∫
∞

0
(β − β2x−1/4)x−β2/4e−(β−x)2/2dx

= βΓ (1 − β2/4)e−β2/4 Dβ2/4−1(−β)

−
β2

4
Γ (−β2/4)e−β2/4 Dβ2/4(−β). (2.26)

Here we used (2.5) to express the last integrals in terms of the parabolic cylinder functions.
By (2.25), (2.26) should equal

β

2

∫
∞

0
x−β2/4e−(β−x)2/2dx =

β

2
Γ (1 − β2/4)e−β2/4 Dβ2/4−1(−β). (2.27)

Using the fact that wΓ (w) = Γ (w+1) with w = −β2/4 and then canceling the common factors
Γ (1 − β2/4)e−β2/4, (2.26) equalling (2.27) implies that 1

2β Dβ2/4−1(−β) + Dβ2/4(−β) = 0,
which is (2.24).

2.3. Limiting density

Let φ(x) =
1

√
2π

e−x2/2 and Φ(x) =
1

√
2π

 x
−∞

e−u2/2du, be the density and the distribution
function of a standard normal random variable. Then we define

C0(β) =

[
1 +

βΦ(β)

φ(β)

]−1

, (2.28)

which is the non-degenerate limit of the delay probability. Defining p(x, ∞) = limt→∞ p(x, t),
the limiting distribution of the diffusion process is given by (see [13])

p(x, ∞) =


C0(β)βe−βx , x > 0,

C0(β)βe−
1
2 x2

e−βx , x < 0.
(2.29)
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This also follows from our expression for the Laplace transform p̂. Since D0(β) = e−β2/4, we
have Rβ(0) =

1
2β, and the function p̂ has a pole at θ = 0 if β > 0 (the stable case). Calculating

the residue yields

p(x, ∞) =
1

1 − β R′
β(0)


βe−βx , x > 0,

βe−
1
2 x2

e−βx , x < 0,
(2.30)

and some further algebra shows that indeed R′
β(0) = −Φ(β)/φ(β).

2.4. Large-time asymptotics

We give the approach to equilibrium, distinguishing the cases x, x0 positive or negative. We
note that p(x, ∞) = 0 if β ≤ 0. Here a(t) ∼ b(t) means that limt→∞[a(t)/b(t)] = 1. The proof
of the following theorem is sketched in Section 3.2.

Theorem 5. Consider x0 > 0.

(i) For x > 0, β < β∗, and β ≠ 0,

p(x, t) − p(x, ∞) ∼
1

2
√

π t3/2
e−

1
4 β2t e

1
2 β(x0−x)

×


xx0 −

x + x0

Rβ(−β2/4)
+

1

R2
β(−β2/4)


. (2.31)

(ii) For x < 0, β < β∗, and β ≠ 0,

p(x, t) − p(x, ∞) ∼
1

2
√

π t3/2
e−

1
4 β2t e−

1
4 x2

e
1
2 β(x0−x)

×
[1 − x0 Rβ(−β2/4)]

R2
β(−β2/4)

Dβ2/4(−β − x)

Dβ2/4(−β)
. (2.32)

(iii) For x > 0 and β > β∗,

p(x, t) − p(x, ∞) ∼ eθP t e
1
2 β(x0−x)e−(x+x0)

√
θP+β2/4

ϕ′
β(θP )

. (2.33)

(iv) For x < 0 and β > β∗,

p(x, t) − p(x, ∞) ∼ eθP t e−
1
4 x2

e−
1
2 βx D−θP (−β − x)

D−θP (−β)

e
1
2 x0β−x0

√
θP+β2/4

ϕ′
β(θP )

. (2.34)

(v) For x > 0 and β = β∗,

p(x, t) − p(x, ∞) ∼
1

√
π t

e−
1
4 β2

∗ t e
1
2 β∗(x0−x). (2.35)

(vi) For x < 0 and β = β∗,

p(x, t) − p(x, ∞) ∼
1

√
π t

e−
1
4 β2

∗ t e−
1
4 x2

e
1
2 β∗(x0−x)

D
β2
∗/4

(−β∗−x)

D
β2
∗/4

(−β∗)
. (2.36)



1532 J.S.H. van Leeuwaarden, C. Knessl / Stochastic Processes and their Applications 121 (2011) 1524–1545

Theorem 6. Consider x0 < 0.

(i) For x > 0, β < β∗, and β ≠ 0,

p(x, t) − p(x, ∞) ∼
1

2
√

π t3/2
e−

1
4 β2t e

1
2 β(x0−x)e

1
4 x2

0

×
Dβ2/4(−β − x0)

Dβ2/4(−β)


x

Rβ(−β2/4)
−

1

R2
β(−β2/4)


. (2.37)

(ii) For x < 0, β < β∗, and β ≠ 0,

p(x, t) − p(x, ∞) ∼
1

2
√

π t3/2
e−

1
4 β2t e

1
2 β(x0−x)e

1
4 (x2

0−x2)

×
1

R2
β(−β2/4)

Dβ2/4(−β − x)Dβ2/4(−β − x0)

D2
β2/4

(−β)
. (2.38)

(iii) For x > 0 and β > β∗,

p(x, t) − p(x, ∞) ∼ eθP t e
1
4 x2

0 e
1
2 βx0

D−θP (−β − x0)

D−θP (−β)

e−
1
2 xβ−x

√
θP+β2/4

ϕ′
β(θP )

. (2.39)

(iv) For x < 0 and β > β∗,

p(x, t) − p(x, ∞) ∼ eθP t e
1
4 (x2

0−x2)e
1
2 β(x0−x) D−θP (−β − x0)D−θP (−β − x)

D2
−θP

(−β)ϕ′
β(θP )

. (2.40)

(v) For x > 0 and β = β∗,

p(x, t) − p(x, ∞) ∼
1

√
π t

e−
1
4 β2

∗ t e
1
4 x2

0 e
1
2 β∗(x0−x)

Dβ2
∗/4(−β∗ − x0)

Dβ2
∗/4(−β∗)

. (2.41)

(vi) For x < 0 and β = β∗,

p(x, t) − p(x, ∞) ∼
1

√
π t

e−
1
4 β2

∗ t e
1
4 (x2

0−x2)e
1
2 β∗(x0−x)

×
Dβ2

∗/4(−β∗ − x)Dβ2
∗/4(−β∗ − x0)

D2
β2

∗/4
(−β∗)

. (2.42)

Here ϕ′
β(θP ) = (4θP + β2)−1/2

− R′
β(θP ), as in (2.19). When β = 0 the result is independent

of x0 and we have

p(x, t) ∼
1

√
π t


1, x > 0,

e−x2/2, x < 0.
(2.43)

2.5. Spectral properties

We first note that in the limit β → ∞ with x, x0 → −∞, and with x + β ≡ y and
x0+β ≡ y0 fixed, the expression(s) in Theorem 3 approach the Laplace transform of the standard
Ornstein–Uhlenbeck process. We use the alternate form (2.13) for p̂(x; θ), which applies for
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x, x0 < 0. For β → +∞ (−β → −∞) we use the asymptotic results ([12], p. 1094)

D−θ (−β) ∼

√
2π

Γ (θ)
βθ−1eβ2/4, (2.44)

D−θ (β) ∼ β−θ e−β2/4, (2.45)

with which D−2
−θ (−β) and D−θ (β)/D−θ (−β) decay roughly like e−β2/2 as β → ∞. Thus

letting β → ∞ in (2.13) (with y, y0 fixed) and noting that exp[
1
4 (x2

0 − x2) +
1
2β(x0 − x)] =

exp[
1
4 (y2

0 − y2)] we find that

p̂(x; θ) →
Γ (θ)
√

2π
e

1
4 (y2

0−y2) D−θ (y>)D−θ (−y<), (2.46)

where y> = max{y, y0} and y< = min{y, y0}. The right side of (2.46) is precisely the Laplace
transform of the density of the standard Ornstein–Uhlenbeck process, which inverts to (see [17])

q(y, t) =
e

1
4 (y2

0−y2)

√
2π

∞−
n=0

Dn(y0)Dn(y)

n!
e−nt , y ∈ R. (2.47)

Here Dn(y) = e−y2/42−n/2 Hn(y/
√

2) where Hn(·) is the nth Hermite polynomial. This series
may be explicitly summed to give

q(y, t) =
1

√
2π


1

1 − e−2t
exp

[
−

(y − y0e−t )2

2(1 − e−2t )

]
, y ∈ R. (2.48)

The singularities in (2.46) are those of the factor Γ (θ), which are simple poles at θ = −N ; N =

0, 1, 2, . . ., with residues (−1)N /N !. We now examine how the spectrum of the Halfin–Whitt
diffusion approaches that of the Ornstein–Uhlenbeck process, for β → ∞. We recall that the
former spectrum consists of the continuous spectrum where ℜ(θ) ∈ (−∞, −β2/4) and a discrete
spectrum which consists of θ = 0 (for any β > 0) and the solutions to ϕβ(θ) = 0 in (2.19).
Finding the eigenvalues is equivalent to solving

Dp(−β)


β2/4 − p = D′

p(−β). (2.49)

Here, we set p = −θ and multiplied (2.19) by Dp(−β). Note that the roots of Dp(−β) = 0
would correspond to zeros, and not poles, of p̂(x; θ), so that (2.49) and (2.19) are equivalent.

In Section 3.3 we show that all eigenvalues must be real and we give a topological argument
that establishes the following result.

Theorem 7. Denoting the solutions to (2.20) by 0 < β∗ < β∗,2 < β∗,3 < · · ·, for β∗,N < β <

β∗,N+1 (2.49) has exactly N solutions (at least for 1 ≤ N ≤ 100) in the interval p ∈ (0, β2/4).
We call these solutions pN (β) and they satisfy the asymptotic properties

pN (β∗,N ) =
1
4
β2

∗,N ∼ N −
1
6
, N → ∞ (2.50)

and (for N fixed)

pN (β) − N ∼ −
1

(N − 1)!

e−β2/2
√

2π
β2N−3, β → ∞. (2.51)
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Fig. 1. The function D′

β2/4
(−β) for β ∈ [0, 4].

Fig. 2. Solutions to


β2/4 − pDp(−β) = D′
p(−β).

The critical values β∗,N are asymptotically given by

β∗,N ∼ 2


N − 1/6, N → ∞. (2.52)

We establish this theorem in Section 3.3. The argument relies on the positivity of a sequence
ΩN in (3.42). We established this numerically for N ≤ 100 and asymptotically for N → ∞, but
not yet for all N , thus the qualification above. The expressions in (2.52), and hence (2.50), follow
immediately from (2.22), by setting sin(πβ2/4 + π/6) = 0. While these apply for N → ∞ they
work well also for moderate N . For example, the exact value of β∗ (N = 1) is 1.85722 . . ., while
(2.52) gives the approximation

√
10/3 = 1.82574 . . .. The first few solutions of (2.20) are given

by β∗,2 ≈ 2.72133, β∗,3 ≈ 3.37465, and β∗,4 ≈ 3.92155. In Fig. 1 we plot D′

β2/4
(−β) versus

β for β ∈ [0, 4], which illustrates the first four roots. Fig. 1 also illustrates the growth and rapid
oscillations of D′

β2/4
(−β), as predicted by the asymptotic formula (2.22).

To see the evolution of the discrete part of the spectrum with increasing β, we plot in Fig. 2
the solutions p = p(β) to the equation in (2.49). This clearly shows the branches pN (β) being
“born” along the parabola p = β2/4 at the points (β∗,N , 1

4β2
∗,N ). Once a branch is born it remains

in the range 0 < p < β2/4 and approaches N as β → ∞. We see that each pN (β) increases



J.S.H. van Leeuwaarden, C. Knessl / Stochastic Processes and their Applications 121 (2011) 1524–1545 1535

with β, but only slightly. Indeed Theorem 7 shows that the total movement of the N -th branch
satisfies

pN (∞) − pN (β∗,N ) →
1
6

= 0.1666 . . . , N → ∞. (2.53)

When N = 1 (resp., N = 2) the exact values of the left side of (2.53) are 0.1377 (resp., 0.1486).
Fig. 2 thus illustrates how the discrete Ornstein–Uhlenbeck spectrum develops from the present
model as β ↑ ∞. The expression in (2.51) quantifies the “flatness” of the curves in Fig. 2 for
large values of β, and gives the gap(s) between the discrete spectra of the Ornstein–Uhlenbeck
process and the Halfin–Whitt diffusion. Establishing (2.51) requires more work, and this is done
in Section 3.3, along with the first part of Theorem 7.

3. Proofs

3.1. Derivation of the Laplace transforms

We now present the proofs of Theorems 2 and 3. If p satisfies (2.2) its Laplace transform
satisfies

θ p̂(x; θ) − δ(x − x0) = −
d

dx
[A(x) p̂(x; θ)] +

d2 p̂(x; θ)

dx2 , (3.1)

where

−
d

dx
[A(x) p̂(x; θ)] =


β

d
dx

p̂(x; θ), x > 0,

(x + β)
d

dx
p̂(x; θ) + p̂(x; θ), x < 0.

(3.2)

First we take x0 > 0 so that δ(x − x0) = 0 in the range x < 0. For x < 0 we write
p̂ = e−x2/4e−βx/2v and then (3.1) reduces to the differential equation ([6], p. 116)

v′′
+

[
1
2

− θ −
1
4
(x + β)2

]
v = 0, (3.3)

whose solution is v(x; θ) = α1(θ)D−θ (−β − x), where α1 is still to be determined. Note that
D−θ (−z) has Gaussian decay as z → −∞, while D−θ (z), which is a second solution to the
parabolic cylinder equation (3.3), grows like O(ez2/4) as z → −∞.

For x > 0 the function p̂ = ewx satisfies the homogeneous version of (3.1) if

w2
+ βw − θ = 0, (3.4)

with solutions w =
1
2 [−β −


β2 + 4θ ] and w∗ =

1
2 [−β +


β2 + 4θ ]. It thus follows that

p̂(x; θ) =


α2(θ)ewx

+ α3(θ)ew∗x , 0 < x < x0
α4(θ)ewx , x > x0,

(3.5)

where α2, α3 and α4 still need to be determined. Continuity at x = x0 yields p̂(x+

0 ; θ) =

p̂(x−

0 ; θ) and the derivative has a jump at x0, with

p̂x (x+

0 ; θ) − p̂x (x−

0 ; θ) = −

∫ x+

0

x−

0

δ(x − x0)dx = −1, (3.6)
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which translates into

α2ewx0 + α3ew∗x0 = α4ewx0 , (3.7)

wα4ewx0 − wα2ewx0 − w∗α3ew∗x0 = −1. (3.8)

The continuity of p and px at x = 0 implies the continuity of p̂ and p̂x = ∂ p̂/∂x , and this yields
the additional relations

α2 + α3 = α1 D−θ (−β), (3.9)

wα2 + w∗α3 = −α1

[
D′

−θ (−β) +
1
2
β D−θ (−β)

]
. (3.10)

(3.7)–(3.10) give four equations for the four unknowns α1, α2, α3 and α4. Some further algebra
and the definition Rβ(θ) = D′

−θ (−β)/D−θ (−β) yields

α1(θ) = −
1

D−θ (−β)

α3(θ)


β2 + 4θ

Rβ(θ) + w + β/2
, (3.11)

α2(θ) = −α3(θ) −
α3(θ)


β2 + 4θ

Rβ(θ) + w + β/2
, (3.12)

α3(θ) =
1

β2 + 4θ
e−x0w∗ , (3.13)

α4(θ) = α2(θ) + α3(θ)ex0(w∗−w). (3.14)

We thus obtain Theorem 2. Using the absolute value |x − x0| allows us to write the solution as a
single formula that applies for all x > 0 (cf. (2.7)).

To establish Theorem 3 we note that now δ(x − x0) = 0 in the range x > 0. Thus we write

p̂(x; θ) = γ4(θ)ewx , x > 0, (3.15)

and we need p̂ to decay for x → −∞ so we write

p̂(x; θ) = γ1(θ)e−
1
4 x2

e−
1
2 βx D−θ (−β − x), x < x0 < 0. (3.16)

But in the range x0 < x < 0 the solution will involve both of the parabolic cylinder functions
D−θ (−β − x) and Dθ (β + x), hence

p̂(x; θ) = e−
1
4 x2

e−
1
2 βx

[γ2(θ)D−θ (−β − x) + γ3(θ)D−θ (β + x)]. (3.17)

The functions γ j (θ) are determined by continuity of p̂ and d
dx p̂ at x = 0, which leads to

γ4 = γ2 D−θ (−β) + γ3 D−θ (β), (3.18)

wγ3 = −
1
2
βγ4 − γ2 D′

−θ (−β) + γ3 D′
−θ (β), (3.19)

continuity of p̂ at x = x0,

γ1 D−θ (−β − x0) = γ2 D−θ (−β − x0) + γ3 D−θ (β + x0), (3.20)
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and the jump condition of d
dx p̂ at x = x0

− 1 = e−
1
4 x2

0 e−
1
2 βx0 [−γ2 D′

−θ (−β − x0) + γ3 D′
−θ (β + x0) + γ1 D′

−θ (−β − x0)]. (3.21)

Eqs. (3.18)–(3.21) give a 4×4 linear system whose solution leads to Theorem 3. The Wronskian
identity (2.14) allows us to simplify some of the final expressions. In Theorem 3, A(θ) is the
same as γ1(θ)e−x2

0/4e−βx0/2.

3.2. Sketch of the derivation of the asymptotic results

We now briefly derive the asymptotic results that appear in Theorems 5 and 6. We refer the
reader to [7] for a discussion of the asymptotic evaluation of an inverse Laplace transform for
t → ∞. This involves locating the singularity with the largest real part (cf. Theorem 4) and
expanding the integrand near this dominant singularity. Below we sketch some of the details,
paying particular attention to the case where the pole at θP is close to the branch point at
−β2/4. Theorems 5 and 6 include the critical case β = β∗, which corresponds to there being an
algebraic factor t−1/2 in the relaxation asymptotics (rather than t−3/2 (β < β∗) or t0 (β > β∗)).
The discussion below also shows how to treat cases where β ≈ β∗, which we did not give in
Theorems 5 and 6.

Consider a contour integral

I (t) =
1

2π i

∫
Br

g(z)
√

z + f (z)
ezt dz. (3.22)

Here Br is a vertical Bromwich contour in the z-plane, with the integrand analytic to the right of
Br. First we assume that f and g are analytic functions of z in the half-plane ℜ(z) < −ε0 for
some ε0 > 0 with g(0) ≠ 0 and f (0) ≠ 0. Then the asymptotics as t → ∞ are governed by the
branch point at z = 0, if

√
z + f (z) = 0 has no solutions in the range ℜ(z) > 0. Under these

assumptions we can obtain the asymptotics of (3.22) simply by expanding the analytic functions
f and g about z = 0:

I (t) =
1

2π i

∫
Br

g(0)

f (0)

[
1 −

√
z

f (0)
+ O(z, z3/2)

]
ezt dz

=
g(0)

f (0)

d
dt


1

2π i

∫
Br

[
1 −

√
z

f (0)
+ O(z, z3/2)

]
ezt

z
dz


∼ −

g(0)

f 2(0)

d
dt

[L−1(z−1/2)(t)]

= −
g(0)

f 2(0)

d
dt


1

√
π t


=

1

2
√

π

g(0)

f 2(0)
t−3/2. (3.23)

Here L−1(F(z)) is the inverse Laplace transform of F(z). We note that error terms involving
integer powers of z in the Taylor expansion can be interpreted as the distributions δ(t), δ′(t), etc.,
and these vanish for t > 0. The fractional power error terms, such as z3/2, will invert to a term
proportional to t−5/2, which is smaller than the leading term.

If g(0) ≠ 0 but f (0) = 0 then again expanding about z = 0 leads to

I (t) =
1

2π i

∫
Br

g(0)

[
1

√
z

+ O(
√

z)

]
ezt dz ∼

g(0)
√

π t
. (3.24)
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If f (z) +
√

z = 0 has a solution at z = z∗ in the range ℜ(z) > 0, with f ′(z∗) +
1
2 z−1/2

∗ ≠ 0
then the simple pole at z∗ determines the behavior of I (t) and we obtain

I (t) ∼
g(z∗)

f ′(z∗) +
1
2 z−1/2

∗

ez∗t . (3.25)

We can also consider the case where the branch point and pole are close to each other. Then f (0)

would be small so we set f (0) = ε. By expanding the integrand about z = 0 and introducing the
(large) time scale t = ε−2T we have

I (t) ∼
1

2π i

∫
Br

g(0)
√

z + ε
ezt dz

= g(0)


|ε|sgn(ε)

√
πT

−
2ε
√

π
eT

∫
∞

√
T sgn(ε)

e−u2
du


. (3.26)

For ε > 0 and T → ∞ we recover the behavior in (3.23), as the right-hand side of (3.26)
becomes O(T −3/2). For ε < 0 and T → ∞ (3.26) behaves as an exponential, as in (3.25).
Finally, if ε = 0 (3.26) becomes g(0)/

√
π t , so that (3.24) is recovered as a special case.

Since D−θ (·) is an entire function of θ , we immediately obtain Theorems 5 and 6. When
β = 0 or β = β∗ the asymptotics follow from (3.24), when β > β∗ (3.25) applies, while for
β < β∗ (with β ≠ 0) (3.23) holds. We must simply identify f (z) and g(z) from Theorems 2 and
3, which necessitates that we distinguish between x, x0 positive and negative.

3.3. Derivation of the spectral properties

We establish Theorem 7, and hence Theorem 4 about the relaxation time. We first show that
any eigenvalue λ must be real. Let p(x, t) = eλt q(x) be a solution to (2.1) and (2.2). Then setting

q(x) =


e−βx/2 R(x), x > 0,

e−x2/4e−βx/2 R(x), x < 0,
(3.27)

we obtain from (2.1) and (2.2)

λR =


Rxx −

1
4
β2 R, x > 0,

Rxx +

[
1
2

−
1
4
(x + β)2

]
R, x < 0.

(3.28)

We take the complex conjugates of (3.28) and note that β is real. Multiplying (3.28) by R̄ (the
complex conjugate of R), multiplying the complex conjugates of (3.28) by R, and subtracting
the results, yields

(λ − λ̄)R R̄ = R̄ Rxx − R R̄xx (3.29)

and this holds for both x > 0 and x < 0. By integrating (3.29) over all x and using the fact that
R, R̄, Rx and R̄x are continuous at x = 0 we obtain

(λ − λ̄)

∫
∞

−∞

|R(x)|2dx =

∫
∞

−∞

d
dx

[R̄ Rx − R̄x R]dx = 0. (3.30)
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Hence λ = λ̄ and any eigenvalue (hence solution of (2.49)) must be real. By multiplying (3.28)
by R and integrating by parts we then obtain

λ

∫
∞

−∞

R2dx −
1
2

∫ 0

−∞

R2dx = −
β2

4

∫
∞

0
R2dx

−

∫ 0

−∞

(β + x)2

4
R2dx −

∫
∞

−∞

R2
x dx . (3.31)

From (3.31) we conclude that λ < 1
2 , but this is not very sharp since of course λ ≤ 0. Next we

turn to equation (2.49). To show that for β ∈ (β∗,N , β∗,N+1), (2.49) has exactly N roots we use
a topological argument, showing that a new root (p = −θ) enters the interval (0, β2/4) at the
critical values β = β∗,N , and that once a root enters this interval it cannot leave. This behavior
is also clearly demonstrated numerically by Fig. 2. We recall that Dp(−β) is an entire function
of both p and β, and then any solution of (2.49), call it pN (β), must be a smooth function of
β. This can be obtained by differentiating (2.49) (with −θ replaced by pN (β)) with respect to β

and using the analyticity of Dp(−β). Thus a root cannot disappear in a discontinuous manner,
and if it leaves the interval p ∈ (0, β2/4) it must do so at one of the endpoints.

For β ∈ (β∗, β∗,2) = (1.85722 . . . , 2.72133 . . .) we can show that (2.49) has a root simply by
examining the signs of the left and right sides of (2.49), at p = 0+ and at p = β2/4. Consider
D′

β2/4
(−β). When β = 0 this function is zero and it becomes positive for β small and positive

(see expression (3.32) below with p = β2/4, and also Fig. 1). Then by the definitions of β∗ and
β∗,2 (as the first two positive roots) it follows that D′

β2/4
(−β) < 0 for β ∈ (β∗, β∗,2). Thus for

β in this range the right side of (2.49) is negative at p = β2/4 while the left side vanishes.
Now consider the behavior of (2.49) for p → 0+ and β fixed. By a Taylor series we have,

using (2.6),

D′
p(−β) =

β

2
e−β2/4

+ pA(β) + O(p2), (3.32)

where

A(β) = −
d

dβ


eβ2/4

i
√

2π

∫
C
(log u)eu2/2eβudu



=
1

i
√

2π

β

2
eβ2/4

∫
C
(log u)eu2/2eβudu +

eβ2/4

i
√

2π

∫
C

1
u

eu2/2eβudu. (3.33)

Here C is a vertical contour with ℜ(u) > 0 and we integrated by parts to get the second expres-
sion in (3.33). By similarly expanding Dp(−β) for p → 0 we have

Dp(−β) = e−β2/4
+ pC(β) + O(p2), (3.34)

where

C(β) =
eβ2/4

i
√

2π

∫
C
(log u)eu2/2eβudu. (3.35)

Using (3.32)–(3.34) and expanding (2.49) for small p leads to
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β

2


1 − 4p/β2[e−β2/4

+ pC(β) + O(p2)] =
β

2
e−β2/4

+ p

[
β

2
C(β) −

1
β

e−β2/4
]

+ O(p2)

=
β

2
e−β2/4

+ pA(β) + O(p2). (3.36)

Thus the right side of (3.36) (and hence (2.49)) will exceed the left side if

A(β) −
β

2
C(β) > −

1
β

e−β2/4. (3.37)

But from (3.33) and (3.35) we have

A(β) −
β

2
C(β) =

eβ2/4

i
√

2π

∫
C

u−1eu2/2eβudu

= eβ2/4
∫ β

−∞

e−v2/2dv. (3.38)

The last equality follows from recognizing that a parabolic cylinder function of order −1 can be
expressed in terms of the standard error function.

Thus for β > 0 (3.37) is clearly satisfied. Hence at p = 0+ the right side of (2.49) exceeds
the left side, and this shows that (2.49) has at least one root for β ∈ (β∗, β∗,2). Actually, the same
argument holds for any interval (β∗,2M−1, β∗,2M ) for M = 1, 2, . . .. We have also shown that
p = 0 is a root of (2.49) for all β > 0, but in view of (3.37) p = 0 can never be a double root.
This shows that a solution pN (β) to (2.49) cannot leave the interval (0, β2/4) at p = 0.

We next examine (2.49) near the endpoint p = β2/4. We can clearly only have solutions if
p < β2/4, so we set

β = β∗,N + ξ (3.39)

p =
1
4
β2

− q =
1
4
β2

∗,N +
1
2
β∗,N ξ +

1
4
ξ2

− q. (3.40)

Again using the analyticity of Dp(−β) in both p and β we expand (2.49) in Taylor series about
(p, β) = ( 1

4β2
∗,N , β∗,N ) to obtain

√
q =

ξ

2
[1 + β∗,N ΩN ] + O(ξ2), (3.41)

where

ΩN =

∂
∂p D′

p(−β)

Dp(−β)


β=β∗,N ; p=

1
4 β2

∗,N

. (3.42)

To obtain (3.41) from (2.49) we also divided by Dp(−β), expanded this function, and eliminated
the second derivative D′′

p(−β) by using the parabolic cylinder equation −D′′
p(−β) = (p +

1
2 −

1
4β2)Dp(−β). Thus (3.41) is an algebraic curve (in fact a half-parabola) that approximates (2.49)
near the birth points of pN (β) (see Fig. 2). If 1 + β∗,N ΩN > 0 then this curve exists for ξ > 0
and not for ξ < 0, while ξ = p = 0 is a solution for all N . This shows that the curve pN (β)

enters the interval (0, β2/4) for β > β∗,N (ξ > 0) rather than exits it. Such a curve can only
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Table 1
Some values of ΩN in (3.42) and the asymptotic expression (3.45).

N ΩN (3.45)

1 2.4108 2.5654
2 2.7927 2.9256
3 3.0305 3.1458
4 3.2054 3.3083
5 3.3449 3.4387

10 3.8020 3.8708
20 4.3013 4.3509
30 4.6165 4.6573
40 4.8517 4.8872
50 5.0412 5.0730

enter the interval at p = β2/4 at a root of (2.20). We have thus shown that a new root enters
the interval (0, β2/4) at each critical value β = β∗,N , and once a new root enters it cannot leave
across either endpoint. It remains only to show that 1 + β∗,N ΩN is positive for all N ≥ 1, which
will certainly be true if ΩN > 0.

We have verified numerically that ΩN > 0 for all 1 ≤ N ≤ 100. Furthermore, we have
(from [1], Chapter 19) the following asymptotic formulas for β → ∞, which are analogous to
(2.22)

D′

β2/4(−β) ∼


2
3

1/6 1
√

π
Γ (1/3)


β

2

β2/4

e−β2/8β1/3 cos(πβ2/4 + π/3) (3.43)

d
dp

D′
p(−β)


p=β2/4

∼


3
2

1/6 1
√

π
Γ (2/3)


β

2

β2/4

e−β2/8β2/3

× [log(β/2) sin(πβ2/4 + π/6) + π cos(πβ2/4 + π/6)]. (3.44)

Using (3.43) and (3.44) with β = β∗,N leads to

ΩN ∼ 31/3Γ 2(2/3)(N − 1/6)1/6, N → ∞. (3.45)

Thus ΩN is positive for N sufficiently large. In Table 1 we give some exact values of ΩN and
compare these to the asymptotic formula in (3.45). The agreement is very good and Table 1 gives
strong evidence for the positivity of the sequence ΩN .

We have thus established the first part of Theorem 7, concerning the roots of (2.19) or (2.49),
up to the positivity of the ΩN , for which we provide strong numerical evidence. Certainly we
established Theorem 7 for N up to 100.

To derive (2.51) in Theorem 7 we study asymptotically, as β → ∞, the equation

D′
−θ (−β)

D−θ (−β)
=


θ + β2/4. (3.46)

For β → ∞ the right-hand side becomes

β

2

[
1 +

2θ

β2 −
2θ2

β4 + O(β−6)

]
. (3.47)

In this limit the parabolic cylinder functions have the expansion
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D−θ (−β) = (−β)−θ e−β2/4
[

1 −
θ(θ + 1)

2β2 + O(β−4)

]
+

√
2π

Γ (θ)
βθ−1eβ2/4

[1 + O(β−2)]. (3.48)

The second term is exponentially large (O(eβ2/4)) while the first term is exponentially small
(O(e−β2/4)), unless θ = 0, −1, −2, . . .. In that case 1/Γ (θ) vanishes and then Dn(−β) is
exponentially small, and proportional to the nth Hermite polynomial. Our analysis of (3.46)
will show that θ must be very close to a negative integer if (3.46) holds. If this were not the case
then the second term in (3.48) would dominate and D′

−θ (−β)/D−θ (−β) ∼ −β/2 which could
not equal (3.47) for β → ∞.

For θ → −N we have

Γ (θ) =
(−1)N

N !

1
θ + N

+ O(1), (3.49)

which is just the Laurent expansion of Γ (θ) near a pole. To balance the two parts of the right-
hand side of (3.48) we need to scale θ + N to be roughly O(e−β2/2), so we define ωN by

θ + N = ωN e−β2/2. (3.50)

Then (3.48) becomes

D−θ (−β) = e−β2/4

(−β)N

[
1 −

N (N − 1)

2β2 + O(β−4)

]
+ (−1)N N !ωN β−N−1

[1 + O(β−2)]


. (3.51)

To obtain (3.51) we replaced θ by −N in (3.48) in all factors except 1/Γ (θ), where we used
(3.49) and (3.50). Up to an exponentially small error, (3.47) becomes

β

2
−

N

β
−

N 2

β3 + O(β−5). (3.52)

Computing the logarithmic derivative of (3.48), with the scaling (3.50), and equating the result
to (3.52) leads to

β

2
−

N

β
−

N 2

β3 + O(β−5) ∼
−∆′(β) + β∆(β)/2 −

√
2π N !ωN (−β)−N /2

∆(β) −
√

2π N !ωN (−β)−N−1
, (3.53)

where

∆(β) = eβ2/4 DN (−β) = (−β)N
[

1 −
1
2

N (N − 1)β−2
+ O(β−4)

]
, (3.54)

By using the recurrence in (2.23) to infer the behavior of D′

N (−β), or by directly expanding
(2.6), we obtain

∆′(β) = N (−β)N−1
[
−1 +

1
2
(N − 1)(N − 2)β−2

+ O(β−4)

]
, (3.55)
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so that ∆′(β)/∆(β) = N/β + N (N − 1)/β3
+ O(β−5) as β → ∞. Thus the right-hand side of

(3.53), after some further expansion, becomes

β

2
−

N

β
−

N (N − 1)

β3 −

√
2π

∆(β)
N !(−β)−N ωN [1 + o(1)]. (3.56)

Comparing this to (3.52) we see that the first two terms agree automatically, and agreement of
the O(β−3) terms forces

ωN ∼
−1

√
2π N !

(−β)N−3∆(β)N ∼
β2N−3

√
2π(N − 1)!

. (3.57)

We also see that this analysis would predict that ω0 = 0, and indeed θ = 0 is a solution of (3.46)
(exactly) when β > 0.

4. Discussion and extensions

To summarize, we have obtained explicit expressions for the Laplace transform of the transient
density for the Halfin–Whitt diffusion process, and then established various spectral properties,
for increasing values of the drift parameter β.

In particular we gave the approach to equilibrium for β > 0, and observed a “phase transition”
when β = β∗ ≈ 1.85722, which was also observed recently by Gamarnik and Goldberg [8]. But,
in [8] the authors analyzed the discrete M/M/s model, located the dominant singularity using
the approach in [16] and then evaluated it in the limit of s → ∞ with 1 − ρ = O(s−1/2). In
contrast, we started with the limiting diffusion and located its dominant singularity, inferring the
large time behavior. Thus while [8] considers the limits in the order t → ∞ and then s → ∞

(with 1 − ρ = O(s−1/2)), here we reverse the order. The fact that the results for β∗ agree shows
that such a reversal is possible for this particular model. Perhaps this is due to the fact that the
diffusion limit for the M/M/s model in the Halfin–Whitt regime does not involve a re-scaling
of time t . To provide a formal proof of the suggested interchange of limits is a challenging open
problem.

It is possible to study the discrete M/M/s queue using a Laplace transform over time, and
then expressing the solution in terms of hypergeometric functions (see [23]). Then in the limit of
s → ∞ (with 1 − ρ = O(s−1/2) and number of customers n = s + O(

√
s)) the hypergeometric

functions can be approximated by (the simpler) parabolic cylinder functions, and we would thus
regain our Theorems 1 and 2. Such an approach however would likely not extend to the more
general G I/M/s model, where the analysis of the discrete model seems intractable.

Since the solution in Theorems 1 and 2 is still quite complicated, it would be useful to evaluate
it in further limiting cases. Here we considered only large time t , for fixed values of the drift β and
initial condition x0. It is likely that having β → ±∞ and/or x0 → ±∞ would produce different,
and quite possibly simpler, formulas than those in Theorems 4 and 5. Then space and time would
also need to be scaled appropriately, and it may be possible to approximate the parabolic cylinder
functions by elementary functions, and then asymptotically invert the Laplace transform by using
the saddle point method. We are presently examining some of these different limiting cases.

The exact formulas for the Laplace transform in Theorems 1 and 2 could, with some work,
be generalized to the following diffusion model. Suppose we divide the x− axis as (−∞, ∞) =

I0 ∪ {x∗

1 } ∪ I1 ∪ {x∗

2 } ∪ · · · ∪ {x∗
m} ∪ Im . Here the x∗

j are single points ordered as −∞ < x∗

1 <

x∗

2 < · · · < x∗
m < ∞ and the I j are the intervals I j = (x∗

j , x∗

j+1), with I0 = (−∞, x∗

1 )



1544 J.S.H. van Leeuwaarden, C. Knessl / Stochastic Processes and their Applications 121 (2011) 1524–1545

and Im = (x∗
m, ∞). Then consider a one-dimensional diffusion process with a constant diffu-

sion coefficient (say B(x) = 2 as in (2.2)), and linear drift functions C j (x) = a j x + b j for
x ∈ I j , j = 0, 1, . . . , m. The transient solution to this model can be obtained similarly as we
did here. Denoting again its Laplace transform by p̂(x; θ), we can express it as a linear com-
bination of two parabolic cylinder functions on each of the subintervals I j . The coefficients in
this linear combination will still depend on the transform variable θ , and there will be a total of
2m coefficients. Then we would impose the interface conditions p̂(x∗

j −; θ) = p̂(x∗

j +; θ) and
p̂x (x∗

j −; θ) = p̂x (x∗

j +; θ) for j = 1, 2, . . . , m − 1 and this will lead to 2m − 2 equations for
the undetermined coefficients. The initial condition x0 will lie in some subinterval, say Ik . Then
within this interval we would need to allow for p̂(x; θ) to have different forms for x∗

k < x < x0
and x0 < x < x∗

k+1, and impose the continuity condition p̂(x−

0 ; θ) = p̂(x+

0 ; θ) and jump
condition p̂x (x−

0 ; θ) − p̂(x+

0 ; θ) = 1. Thus within Ik we would have two additional unknown
coefficients, but these are compensated for by the two interface conditions at x0. Finally in the
subintervals I0 and Im , which extend to ±∞, one of the two parabolic cylinder functions must be
eliminated due to its behavior at infinity, and this yields two additional conditions. We have thus
shown that the solution will involve 2m + 2 undetermined coefficients (with 4 coming from the
interval Ik that contains x0), but these are uniquely determined by 2m − 2 interface conditions at
x∗

j (1 ≤ j ≤ m − 1), the two jump conditions at x0, and the two conditions at infinity.
The model analyzed here is a special case of the above, with only two subintervals (thus

m = 1) (−∞, 0) and (0, ∞), and x∗

1 = 0, a0 = −1, a1 = 0, b0 = b1 = −β. Another important
special case is the abandonment model considered in [11]. This model is sometimes denoted by
M/M/s + M (or more generally G I/M/s + G I ) and in [11] it is shown that a diffusion limit
also has the above form, with now a1 = −η rather than a1 = 0, where η measures the effects of
customers abandoning the queue. Note that if η = 1 the drift is C j (x) = −x − β for j = 0, 1
(thus for all x) and then the model collapses to a standard Ornstein–Uhlenbeck process. Using
the method outlined above the Laplace transform can be expressed in terms of parabolic cylinder
functions, for both x < 0 and x > 0.

However, the spectral properties of the abandonment model will necessarily be much different
than those of the Halfin–Whitt diffusion studied here. For any model with drift parameters a0 < 0
and am < 0 the spectrum will be purely discrete, and the approach to equilibrium will thus be
purely exponential, with p(x, t) − p(x, ∞) ∼ F(x, x0)e−r t . Here F will have different forms
on the different subintervals and the relaxation rate r will depend only on the drift parameters
a0, a1, . . . , am; b0, b1, . . . , bm and the interface points x∗

1 , x∗

2 , . . . , x∗
m . Thus the type of phase

transition we observed at β = β∗ will simply not occur in the model with abandonment where
a0 = −1 and a1 = −η. The model analyzed here can be obtained by setting η = 0, but the
limit η → 0+ is highly singular and the continuous part of the spectrum is present only if
η = 0. It may be, however, interesting to study the abandonment model (say its relaxation
rate r = r(η, β)) in the limit of η → 0+, which would presumably show how the spectrum,
though necessarily discrete, begins to resemble a continuous one, say via the coalescence of
some of the poles of the Laplace transform. We are currently investigating some of these spectral
properties.

We are also examining properties of first passage times for some of these diffusion models
with a piecewise linear drift. These may lead to very different asymptotic properties from those
of the transient distribution. In particular, we may see, say as β → ∞, some exponentially large
time scales. In this case the question whether the diffusion process can adequately describe the
original discrete model on very large time scales will become an important.
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Finally we note that for the general model with (m + 1) subintervals the transient density and
its first derivative will be continuous at the interface points x∗

j , but the second derivatives will
generally suffer jumps there. For the Halfin–Whitt diffusion, with or without abandonment, the
drift function is continuous at x = 0 so that the jump will occur only in the third derivatives. This
can be seen also from Theorems 1 and 2, which show that p̂xx (0+

; θ) = p̂xx (0−
; θ).
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