期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:121
Occupation times of spectrally negative Levy processes with applications
Article
Landriault, David2  Renaud, Jean-Francois1  Zhou, Xiaowen3 
[1] Univ Quebec, Dept Math, Montreal, PQ H2X 3Y7, Canada
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[3] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
关键词: Occupation time;    Spectrally negative Levy processes;    Fluctuation theory;    Scale functions;    Ruin theory;   
DOI  :  10.1016/j.spa.2011.07.008
来源: Elsevier
PDF
【 摘 要 】

In this paper, we compute the Laplace transform of occupation times (of the negative half-line) of spectrally negative Levy processes. Our results are extensions of known results for standard Brownian motion and jump-diffusion processes. The results are expressed in terms of the so-called scale functions of the spectrally negative Levy process and its Laplace exponent. Applications to insurance risk models are also presented. (C) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2011_07_008.pdf 213KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次