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Montréal (Québec) H2X 3Y7, Canada

c Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd W., Montréal (Québec)
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Abstract

In this paper, we compute the Laplace transform of occupation times (of the negative half-line) of
spectrally negative Lévy processes. Our results are extensions of known results for standard Brownian
motion and jump-diffusion processes. The results are expressed in terms of the so-called scale functions of
the spectrally negative Lévy process and its Laplace exponent. Applications to insurance risk models are
also presented.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction and results

Let X = (X t )t≥0 be a spectrally negative Lévy process, that is, a Lévy process with no positive
jumps. The law of X such that X0 = x is denoted by Px and the corresponding expectation by
Ex . We write P and E when x = 0. As the Lévy process X has no positive jumps, its Laplace
transform exists, and is given by

E[eθX t ] = etψ(θ),
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for θ, t ≥ 0, where

ψ(θ) = γ θ +
1
2
σ 2θ2

+

∫ 0

−∞

(eθ z
− 1 − θ zI(−1,0)(z))Π (dz),

for γ ∈ R and σ ≥ 0. Also, Π is a σ -finite measure on (−∞, 0) such that∫ 0

−∞

(1 ∧ z2)Π (dz) < ∞. (1)

The measure Π is called the Lévy measure of X , while (γ, σ,Π ) is referred to as the Lévy triplet
of X . Note that E[X1] = ψ ′(0+).

For an arbitrary spectrally negative Lévy process, the Laplace exponent ψ is strictly convex,
and limθ→∞ ψ(θ) = ∞. Thus, there exists a function Φ: [0,∞) → [0,∞) defined by Φ(θ) =

sup{ξ ≥ 0 | ψ(ξ) = θ} (its right-inverse) and such that

ψ(Φ(θ)) = θ, θ ≥ 0.

We first examine the total occupation time of the negative half-line (−∞, 0).

Theorem 1. If ψ ′(0+) > 0, then, for λ ≥ 0,

E[e−λ


∞

0 I{Xs≤0}ds
] = ψ ′(0+)

Φ(λ)
λ

, (2)

where Φ(λ)/λ is to be understood in the limiting sense when λ = 0.

We now recall the definition of the q-scale function W (q). For q ≥ 0, the q-scale func-
tion of the process X is defined as the function with Laplace transform on [0,∞) given
by ∫

∞

0
e−θ z W (q)(z)dz =

1
ψ(θ)− q

, for θ > Φ(q),

and such that W (q)(x) = 0 for x < 0. This function is unique, continuous, positive, and strictly
increasing. We write W = W (0) when q = 0. We have that W (q) is differentiable except for at
most countably many points; see Lemma 8.2 in [14]. Moreover, W (q) is continuously differen-
tiable if X has paths of unbounded variation or if the tail of the Lévy measure, i.e., the function
x → Π (−∞, x) on (−∞, 0), is continuous. Further, W (q) is twice continuously differentiable
on (0,∞) if σ > 0. For more details on the smoothness properties of the q-scale function, see

[4]. We will also use the functions {W
(q)

; q ≥ 0} and {Z (q); q ≥ 0}, defined by

W
(q)
(x) =

∫ x

0
W (q)(z)dz

and

Z (q)(x) = 1 + qW
(q)
(x).

We can now state the following corollary to Theorem 1.

Corollary 1. If ψ ′(0+) > 0, then, for λ > 0 and x ≥ 0,

Ex [e−λ


∞

0 I{Xs≤0}ds
] = ψ ′(0+)Φ(λ)

∫
∞

0
e−Φ(λ)z W (x + z)dz.
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Note that, when x = 0, by the definition of the scale function, we have∫
∞

0
e−Φ(λ)z W (z)dz =

1
ψ(Φ(λ))

=
1
λ
,

therefore recovering Theorem 1 as a special case.
These two results generalize the work done in [23], where the sum of a compound Poisson

process and a Brownian motion is analyzed (see, e.g., Eq. (4.9) in that paper). Using ruin theory
terminology, the authors study the duration of negative surplus, also called the time in red, in such
an insurance risk model; their work is itself an extension of [8] in the pure compound Poisson
case. Related results can also be found in [15,22].

We now examine the occupation time of (−∞, 0) until a negative level −b is crossed for the
first time. Let τ−

−b be the first passage time below −b of X :

τ−

−b = inf{t > 0: X t < −b}.

Theorem 2. If ψ ′(0+) ≥ 0, then, for λ ≥ 0,

E[e−λ
 τ−

−b
0 I{Xs≤0}ds

] =

ψ ′(0+)+
σ 2

2
A(λ)1 (b)
W (λ)(b)

+
 0−

−∞
A(λ)2 (x)


∞

0 Π (dx − y)dy

ψ ′(0+)+
σ 2

2
W (λ)′(b)
W (λ)(b)

+
 0−

−∞
A(λ)3 (x)


∞

0 Π (dx − y)dy
, (3)

where

A(λ)1 (b) = Z (λ)(b)W (λ)′(b)− λ(W (λ)(b))2,

A(λ)2 (x) = Z (λ)(x + b)− Z (λ)(b)
W (λ)(x + b)

W (λ)(b)

and

A(λ)3 (x) = 1 −
W (λ)(x + b)

W (λ)(b)
.

As a special case, we recover the corresponding result for standard Brownian motion; see,
e.g., [10,11].

Our proofs use fluctuation identities for spectrally negative Lévy processes and, as a
consequence, our results are expressed in terms of the so-called scale functions of the spectrally
negative Lévy process (see, e.g., [1,2]) and its Laplace exponent. Only elementary arguments are
needed. To the authors’ knowledge, the literature seems rather scarce on the relationship between
scale functions and certain occupation times of a general spectrally negative Lévy process.

The current work has been partly motivated by the study of an insurance risk model with
implementation delays. Insurance risk models use stochastic processes to describe the surplus
of an insurance company. In risk models of a Parisian nature, an implementation delay in the
recognition of an insurer’s capital insufficiency is applied. More precisely, it is assumed that ruin
occurs as soon as an excursion below a critical level is longer than a deterministic time; such
models have been studied only very recently (see [7,6,17,18]), while the idea has been borrowed
from finance and Parisian barrier options (see [5]). Of more interest in our context is the work
by the same authors: in [17], instead of a deterministic delay, an exponentially distributed grace
period is used in the definition of the Parisian ruin. It turns out that the probability of ruin in this
model is strongly related to the occupation time of the underlying process. The reader is invited
to consult Section 6.2 to obtain further details on this connection.
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The rest of the paper is organized as follows. In the next section, we recall the relevant
notions and results on scale functions and fluctuation identities. Then, in Sections 3–5, we prove
Theorem 2, Theorem 1, and Corollary 1, respectively. Section 6 presents applications to the case
of a Brownian motion with drift and insurance risk models.

2. Scale functions and fluctuation identities

We recall some of the properties of the q-scale function W (q) and its use in fluctuation theory.
Let d = γ −

 0
−1 zΠ (dz). The initial values of W (q) and W (q)′ are known to be

W (q)(0+) =

1/d when σ = 0 and
∫ 0

−1
zΠ (dz) < ∞,

0 otherwise,

and

W (q)′(0+) =

2/σ 2 when σ > 0,
(Π (−∞, 0)+ q)/d2 when σ = 0 and Π (−∞, 0) < ∞,
∞ otherwise.

Now, define

τ−

0 = inf{t > 0: X t < 0},

and, for a > 0,

τ+
a = inf{t > 0: X t > a},

with the convention inf ∅ = ∞. It is well known (see, e.g., [14]) that, for x ≤ a,

Ex [e−qτ+
a ; τ+

a < τ−

0 ] =
W (q)(x)

W (q)(a)
,

Ex [e−qτ−

0 ; τ−

0 < τ+
a ] = Z (q)(x)− Z (q)(a)

W (q)(x)

W (q)(a)
,

and

Ex [e−qτ+
a ; τ+

a < ∞] = e−Φ(q)(a−x).

If ψ ′(0+) ≥ 0, then Px {τ
+
a < ∞} = 1, and therefore

Ex [e−qτ+
a ] = e−Φ(q)(a−x).

Also, we have that

Px {τ
−

0 < ∞, Xτ−

0
∈ dz} =

σ 2

2
[W ′(x)− Φ(0)W (x)]δ0(dz)

+

∫
∞

0
Π (dz − y){e−Φ(0)y W (x)− W (x − y)}dy, (4)

where δ0 is the Dirac measure at 0. The first term of this measure corresponds to the case when
Xτ−

0
= 0, a behaviour called creeping.

In this paper,
 a−

−∞
and


(−∞,a) have the same meaning, while

 a+

−∞
and


(−∞,a]

have the

same meaning. Using the distribution in Eq. (4), together with the fact that Px {τ
−

0 < ∞} =
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1 − ψ ′(0+)W (x) if ψ ′(0+) ≥ 0 (in which case Φ(0) = 0), we obtain

1 = ψ ′(0+)W (x)+
σ 2

2
W ′(x)+

∫ 0−

−∞

∫
∞

0
Π (dz − y){W (x)− W (x − y)}dy. (5)

For more details on spectrally negative Lévy processes and fluctuation identities, the reader
is referred to [14]. Further information, examples, and numerical techniques related to the
computation of scale functions can be found in [4,9,13,16,21].

3. Proof of Theorem 2

The main idea of the proof consists in defining a quantity underestimating and overestimating
the occupation time∫ τ−

−b

0
I{Xs≤0}ds.

This respectively leads to an upper and a lower bound to its Laplace transform. Subsequently,
by taking an appropriate limit, we show that the two bounds converge to the expression on the
right-hand side of (3).

First, we provide a lower bound to this Laplace transform by overestimating the occupation
time. To this end, we consider a clock which starts at time 0 and stops when level ϵ is attained or
when level −b is crossed. Then, if level ϵ was attained first, every time we go below 0, we restart
the clock and subsequently stop it when we get back to ϵ (without going below −b); let Lϵ,b be
the Laplace transform of this overestimating quantity of the occupation time when the process X
sits at level ϵ at time 0. Hence, by the strong Markov property of X , we have

E[e−λ
 τ−

−b
0 I{Xs≤0}ds

] ≥ E[e−λτ+
ϵ ; τ+

ϵ < τ−

−b]L
ϵ,b

=
W (λ)(b)

W (λ)(b + ϵ)
Lϵ,b.

Using the strong Markov property and the spatial homogeneity of X , we get

Lϵ,b = Pϵ{τ−

0 = ∞} +

∫ 0+

−∞

Pϵ{τ−

0 < ∞, Xτ−

0
∈ dx}{Ex [e

−λτ−

−b ; τ−

−b < τ+
ϵ ]

+ Ex [e−λτ+
ϵ ; τ+

ϵ < τ−

−b]L
ϵ,b

}.

Note that, when x < −b,

Ex [e
−λτ−

−b ; τ−

−b < τ+
ϵ ] = 1

and

Ex [e−λτ+
ϵ ; τ+

ϵ < τ−

−b] = 0.

Consequently,

Lϵ,b =

Pϵ{τ−

0 = ∞} +
 0+

−∞
Pϵ{τ−

0 < ∞, Xτ−

0
∈ dx}Ex [e

−λτ−

−b ; τ−

−b < τ+
ϵ ]

1 −
 0+

−∞
Pϵ{τ−

0 < ∞, Xτ−

0
∈ dx}Ex [e−λτ+

ϵ ; τ+
ϵ < τ−

−b]

=
Lϵ,b1 + Lϵ,b2

Lϵ,b3

,
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where, using some of the fluctuation identities in Section 2,

Lϵ,b1 = ψ ′(0+)W (ϵ)+
σ 2

2
W ′(ϵ)


Z (λ)(b)− Z (λ)(b + ϵ)

W (λ)(b)

W (λ)(b + ϵ)


,

Lϵ,b2 =

∫ 0−

−∞


Z (λ)(x + b)− Z (λ)(b + ϵ)

W (λ)(x + b)

W (λ)(b + ϵ)


×

∫
∞

0
Π (dx − y){W (ϵ)− W (ϵ − y)}dy,

and

Lϵ,b3 = 1 −
σ 2

2
W ′(ϵ)

W (λ)(b)

W (λ)(b + ϵ)

−

∫ 0−

−∞

W (λ)(x + b)

W (λ)(b + ϵ)

∫
∞

0
Π (dx − y){W (ϵ)− W (ϵ − y)}dy.

Using Eq. (5), we get

Lϵ,b3 = ψ ′(0+)W (ϵ)+
σ 2

2
W ′(ϵ)

W (λ)(b + ϵ)
[W (λ)(b + ϵ)− W (λ)(b)]

+

∫ 0−

−∞


1 −

W (λ)(x + b)

W (λ)(b + ϵ)

 ∫
∞

0
Π (dx − y){W (ϵ)− W (ϵ − y)}dy.

Alternatively, we now develop a scheme to underestimate the occupation time in question.
Every time we go below −ϵ (−ϵ > −b), we start the clock and stop it when we get back to 0
(without going below −b); let U ϵ,b be the Laplace transform of this underestimating quantity
of the occupation time when X0 = 0. Hence, by the strong Markov property of X , we also
have

E[e−λ
 τ−

−b
0 I{Xs≤0}ds

] ≤ U ϵ,b.

As above, using the strong Markov property and the spatial homogeneity of X , we can
write

U ϵ,b
= Pϵ{τ−

0 = ∞} +

∫ 0+

−∞

Pϵ{τ−

0 < ∞, Xτ−

0
∈ dx}{Ex [e

−λτ−

−b+ϵ ; τ−

−b+ϵ < τ+
ϵ ]

+ Ex [e−λτ+
ϵ ; τ+

ϵ < τ−

−b+ϵ]U
ϵ,b

},

and then

U ϵ,b
=

U ϵ,b
1 + U ϵ,b

2

U ϵ,b
3

,

where

U ϵ,b
1 = ψ ′(0+)W (ϵ)+

σ 2

2
W ′(ϵ)


Z (λ)(b − ϵ)− Z (λ)(b)

W (λ)(b − ϵ)

W (λ)(b)


,
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U ϵ,b
2 =

∫ 0−

−∞


Z (λ)(x + b − ϵ)− Z (λ)(b)

W (λ)(x + b − ϵ)

W (λ)(b)


×

∫
∞

0
Π (dx − y){W (ϵ)− W (ϵ − y)}dy,

and

U ϵ,b
3 = 1 −

σ 2

2
W ′(ϵ)

W (λ)(b − ϵ)

W (λ)(b)

−

∫ 0−

−∞

W (λ)(x + b − ϵ)

W (λ)(b)

∫
∞

0
Π (dx − y){W (ϵ)− W (ϵ − y)}dy.

As for Lϵ,b3 , using Eq. (5), we get

U ϵ,b
3 = ψ ′(0+)W (ϵ)+

σ 2

2
W ′(ϵ)

W (λ)(b)
[W (λ)(b)− W (λ)(b − ϵ)]

+

∫ 0−

−∞


1 −

W (λ)(x + b − ϵ)

W (λ)(b)

 ∫
∞

0
Π (dx − y){W (ϵ)− W (ϵ − y)}dy.

3.1. Proof if σ > 0

First, we assume that X has a Brownian component; that is, σ > 0. In this case, W (0) = 0
and W (λ)′(0+) < ∞. Then,

lim
ϵ→0

Lϵ,b1

ϵ
= lim

ϵ→0
ψ ′(0+)

W (ϵ)

ϵ
+
σ 2

2
W ′(ϵ)

W (λ)(b + ϵ)

×


Z (λ)(b)W (λ)(b + ϵ)− Z (λ)(b + ϵ)W (λ)(b)

ϵ


= ψ ′(0+)W ′(0+)+

σ 2

2
W ′(0+)

W (λ)(b)
[Z (λ)(b)W (λ)′(b)− λ(W (λ)(b))2],

lim
ϵ→0

Lϵ,b2

ϵ
= lim

ϵ→0

∫ 0−

−∞


Z (λ)(x + b)− Z (λ)(b + ϵ)

W (λ)(x + b)

W (λ)(b + ϵ)


×

∫
∞

0+

Π (dx − y)


W (ϵ)

ϵ
−

W (ϵ − y)

ϵ


dy

= W ′(0+)

∫ 0−

−∞


Z (λ)(x + b)− Z (λ)(b)

W (λ)(x + b)

W (λ)(b)

 ∫
∞

0+

Π (dx − y)dy

and, similarly,

lim
ϵ→0

Lϵ,b3

ϵ
= ψ ′(0+) lim

ϵ→0

W (ϵ)

ϵ
+
σ 2

2
lim
ϵ→0

W ′(ϵ)

W (λ)(b + ϵ)


W (λ)(b + ϵ)− W (λ)(b)

ϵ



+ lim
ϵ→0

∫ 0−

−∞


1 −

W (λ)(x + b)

W (λ)(b + ϵ)

 ∫
∞

0
Π (dx − y)


W (ϵ)

ϵ
−

W (ϵ − y)

ϵ


dy
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= ψ ′(0+)W ′(0+)+
σ 2

2
W ′(0+)

W (λ)′(b)

W (λ)(b)
+ W ′(0+)

×

∫ 0−

−∞


1 −

W (λ)(x + b)

W (λ)(b)

 ∫
∞

0
Π (dx − y)dy.

3.2. Proof if σ = 0

If X does not have a Brownian component, we adapt the previous method as follows:

Lϵ,b1

W (ϵ)
= ψ ′(0+), for all ϵ > 0,

lim
ϵ→0

Lϵ,b2

W (ϵ)
= lim

ϵ→0

∫ 0−

−∞


Z (λ)(x + b)− Z (λ)(b + ϵ)

W (λ)(x + b)

W (λ)(b + ϵ)


×

∫
∞

0
Π (dx − y)


W (ϵ)

W (ϵ)
−

W (ϵ − y)

W (ϵ)


dy

=

∫ 0−

−∞


Z (λ)(x + b)− Z (λ)(b)

W (λ)(x + b)

W (λ)(b)

 ∫
∞

0
Π (dx − y)dy

and, similarly,

lim
ϵ→0

Lϵ,b3

W (ϵ)
= ψ ′(0+)+ lim

ϵ→0

∫ 0−

−∞


1 −

W (λ)(x + b)

W (λ)(b + ϵ)



×

∫
∞

0
Π (dx − y)


W (ϵ)

W (ϵ)
−

W (ϵ − y)

W (ϵ)


dy

= ψ ′(0+)+

∫ 0−

−∞


1 −

W (λ)(x + b)

W (λ)(b)

 ∫
∞

0
Π (dx − y)dy.

3.3. Conclusion of the proof

In all cases, i.e., when X has or does not have a Brownian component, the limiting results for
U ϵ,b can be obtained in a similar fashion. In fact, it can easily be proved that, for each i = 1, 2, 3,

lim
ϵ→0

U ϵ,b
i

Lϵ,bi

= 1,

and then

lim
ϵ→0

W (λ)(b)

W (λ)(b + ϵ)
Lϵ,b = E[e−λ

 τ−
−b

0 I{Xs≤0}ds
] = lim

ϵ→0
U ϵ,b.

The details are left to the reader.

Remark 3.1. Note that in the above proof Lebesgue’s dominated convergence theorem has been
used twice. For example, we used implicitly that the integral∫ 0−

−∞

A(λ)3 (x)
∫

∞

0
Π (dx − y)dy =

∫
∞

0

∫
−y−

−∞

A(λ)3 (x + y)Π (dx)dy,
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where A(λ)3 (z) = 1 − W (λ)(z + b)/W (λ)(b), is finite. First, recall that, if ψ ′(0+) > −∞ then,
for ϵ > 0,


−ϵ

−∞
(−z)Π (dz) < ∞ (see, e.g., [19]). Using integration by parts, one can easily

show that, for ϵ > 0,


−ϵ

−∞
Π (−∞, z)dz < ∞ and, in particular, when X has paths of bounded

variation,
 0
−∞

Π (−∞, z)dz < ∞; see also p. 275 of [14].

We assume that X has paths of unbounded variation. Since, for x < −y < 0, 0 ≤ A(λ)3 (x + y)

≤ A(λ)3 (x) ≤ 1, we clearly have that∫ ∞

b/2

∫
−y−

−∞

A(λ)3 (x + y)Π (dx)dy

 ≤

∫
∞

b/2
Π (−∞,−y)dy < ∞.

Also, 
∫ b/2

0

∫
−y−

−∞

A(λ)3 (x + y)Π (dx)dy


≤

∫
−b/2

−∞

∫ b/2

0
dy|A(λ)3 (x)|Π (dx)+

∫ 0−

−b/2

∫
−x

0
dy|A(λ)3 (x)|Π (dx)

≤ (b/2)Π (−∞,−b/2)+

∫ 0−

−b/2
(−x)(1 − W (λ)(x + b)/W (λ)(b))Π (dx)

< ∞,

since ∫ 0−

−b/2
(−x)(W (λ)(b)− W (λ)(x + b))Π (dx) =

∫ 0−

−b/2
x2W (λ)′(ξx + b)Π (dx) < ∞,

where ξx ∈ (−x, 0) ⊂ (−b/2, 0); the latter equality follows from Taylor’s expansion. Since
W (λ)′ is continuous when X has paths of unbounded variation, the finiteness of this integral
follows from (1). When X has paths of bounded variation, the proof is easier, and is left to the
reader.

The proof of the finiteness of the integral involving A(λ)2 is similar.

4. Proof of Theorem 1

We use the same general idea as in the proof of Theorem 2. Define Lϵ = Lϵ,∞. In this case,
using the strong Markov property twice, we obtain

Lϵ = Pϵ{τ−

0 = ∞} + LϵE[e−λτ+
ϵ ]

∫ 0+

−∞

Pϵ{τ−

0 < ∞, Xτ−

0
∈ dx}Ex [e−λτ+

0 ]

= ψ ′(0+)W (ϵ)+ Lϵe−Φ(λ)ϵ
∫ 0+

−∞

Pϵ{τ−

0 < ∞, Xτ−

0
∈ dx}eΦ(λ)x .

Since, for r > 0,

Ex [e
r X

τ
−

0 ; τ−

0 < ∞] = er x
− ψ(r)er x

∫ x

0
e−r z W (z)dz −

ψ(r)

r
W (x), (6)

we can write∫ 0+

−∞

Pϵ{τ−

0 < ∞, Xτ−

0
∈ dx}eΦ(λ)x = Eϵ[e

Φ(λ)X
τ
−

0 ; τ−

0 < ∞]
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= eΦ(λ)ϵ − λeΦ(λ)ϵ
∫ ϵ

0
e−Φ(λ)x W (x)dx

−
λ

Φ(λ)
W (ϵ).

It is easily shown that

lim
ϵ→0

 ϵ
0 e−Φ(λ)x W (x)dx

W (ϵ)
= 0.

Indeed, if W (0+) > 0, this is trivial; and, if W (0+) = 0, one can use L’Hôpital’s rule.
Consequently,

lim
ϵ→0

Lϵ = lim
ϵ→0

ψ ′(0+)W (ϵ)

1 −


1 − λ

 ϵ
0 e−Φ(λ)x W (x)dx −

λ
Φ(λ)e

−Φ(λ)ϵW (ϵ)
 = ψ ′(0+)

Φ(λ)
λ

.

Similarly, if we define U ϵ
= U ϵ,∞, one can show that

lim
ϵ→0

U ϵ
= ψ ′(0+)

Φ(λ)
λ

,

and the result immediately follows.

Remark 4.1. Here is (the sketch of) another proof for Theorem 1, as suggested by Ronnie
Loeffen. Sparre Andersen’s identity (see Lemma VI. 15 in [1]) says that, for all t > 0,

At
law
= G t ,

where At =
 t

0 I{Xs≥0}ds and G t = sup{s < t : X t = X t }, and where X t = sups≤t Xs . Therefore,
if ep is an independent exponential random variable with mean 1/p, then, for λ ≥ 0,

E[e−λ
 ep

0 I{Xs≤0}ds
] = E[e−λ(ep−Aep )] = E[e−λ(ep−Gep )].

By the Wiener–Hopf factorization, the term on the right-hand side is equal to

pΦ(λ+ p)

Φ(p)(λ+ p)

(see Theorem VII. 4 in [1]). Taking the limits when p goes to zero on both sides yields the result.

5. Proof of Corollary 1

Using the strong Markov property of X twice, using some of the fluctuation identities in
Section 2, and then using Theorem 1, we have

Ex [e−λ


∞

0 I{Xs≤0}ds
] = Px {τ

−

0 = ∞} + Ex [e−λ


∞

0 I{Xs≤0}ds
; τ−

0 < ∞]

= ψ ′(0+)W (x)+ ψ ′(0+)
Φ(λ)
λ

∫ 0+

−∞

Px {τ
−

0 < ∞, Xτ−

0
∈ dz}

× Ez[e−λτ+

0 ; τ+

0 < ∞]

= ψ ′(0+)W (x)+ ψ ′(0+)
Φ(λ)
λ

∫ 0+

−∞

Px {τ
−

0 < ∞, Xτ−

0
∈ dz}eΦ(λ)z

= ψ ′(0+)W (x)+ ψ ′(0+)
Φ(λ)
λ

Ex [e
Φ(λ)X

τ
−

0 ; τ−

0 < ∞].
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Using the result in Eq. (6) once more, we get

Ex [e−λ


∞

0 I{Xs≤0}ds
] = ψ ′(0+)

Φ(λ)
λ


eΦ(λ)x


1 − λ

∫ x

0
e−Φ(λ)z W (z)dz


= ψ ′(0+)

Φ(λ)
λ


λ

∫
∞

0
e−Φ(λ)z W (x + z)dz


,

where in the last step a change of variables and an integration by parts were undertaken. The
result follows.

6. Applications

6.1. Brownian motion with drift

For Brownian motion with drift, i.e., if X is of the form X t = mt+σ Bt with m = ψ ′(0+) ≥ 0
and σ > 0, where B is a standard Brownian motion, then Π ≡ 0, and, using Theorem 2, we have

E[e−λ
 τ−

−b
0 I{Xs≤0}ds

] =
mW (λ)(b)+ (σ 2/2)[Z (λ)(b)W (λ)′(b)− λ(W (λ)(b))2]

mW (λ)(b)+ (σ 2/2)W (λ)′(b)
,

where, as one can easily verify from the definition,

W (λ)(x) =
2

√
m2 + 2λσ 2

e−(m/σ 2)x sinh((x/σ 2)


m2 + 2λσ 2),

for x > 0.
Then, for standard Brownian motion, in which case m = ψ ′(0+) = 0 and σ = 1, we have,

from Theorem 2, that

E[e−λ
 τ−

−b
0 I{Xs≤0}ds

] =
Z (λ)(b)W (λ)′(b)− λ(W (λ)(b))2

W (λ)′(b)
,

where

W (λ)(x) =


2
λ

sinh(x
√

2λ),

and then

Z (λ)(x) = cosh(x
√

2λ).

Recalling that cosh2(x)− sinh2(x) = 1, we get that

E[e−λ
 τ−

−b
0 I{Xs≤0}ds

] =
2 cosh2(b

√
2λ)− λ(2/λ) sinh2(b

√
2λ)

2 cosh(b
√

2λ)

=
1

cosh(b
√

2λ)
,

therefore recovering Proposition 4.12 of [11] (see also [10]).

6.2. Insurance risk models

Classical insurance risk models describe the surplus process of an insurance company using a
compound Poisson process or a Brownian motion with drift, i.e., special cases of spectrally nega-
tive Lévy processes. In those models, it is usually assumed that the net profit condition holds; this
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condition ensures that ruin will not occur almost surely. For a Lévy insurance risk process, i.e., a
spectrally negative Lévy process with non-monotone paths, this amounts to E[X1] = ψ ′(0+) >

0, and it is also equivalent to limt→∞ X t = ∞ almost surely. An interpretation of Lévy insur-
ance risk models for the surplus modelling of large insurance companies is for instance given
in [12].

Classically, the probability of ruin has been the most studied risk measure to evaluate the
quality of a company. More recently, the analysis of the duration of the negative surplus, in other
words the occupation time of the negative half-line, has also been considered in the compound
Poisson case [8] and then in a jump-diffusion model [23]; see also [3]. Recall that Theorem 1
extends Eq. (4.9) in [23], where the sum of a compound Poisson process and a Brownian motion
is considered.

We now want to provide another link between Theorem 1 and insurance risk models. In [17], a
new definition of the time to ruin is proposed. In that paper, each excursion of the surplus process
X below 0 is accompanied by an independent copy of an independent (of X ) and exponentially
distributed random variable ed with mean 1/d; we will refer to it as the implementation clock. If
the duration of a given excursion below 0 is less than that of its associated implementation clock,
then ruin does not occur. More precisely, we assume that ruin occurs at the first time τd that an

implementation clock rings before the end of its corresponding excursion below 0. It is worth
pointing out that the time to ruin τd is easily defined when the Lévy insurance risk processes X
has sample paths of bounded variation.

Therefore, in [17], the case of a surplus process of bounded variation is considered. In that
model, one can show that the probability of ruin in this Parisian risk model with exponential
implementation delays can be expressed as follows:

P{τd < ∞} = 1 − E[e−d


∞

0 I{Xs≤0}ds
],

if the exponential clock has mean 1/d. Indeed, for each excursion of length T , the probability to
survive, i.e., the probability that the exponential random variable associated with it is larger than
T , is equal to exp{−d T }. Using the independence assumption between the clocks and summing
up over all the excursions (there are countably many of them), we get

E[e−d


∞

0 I{Xs≤0}ds
].

Using Theorem 1, we recover the corresponding expression in [17]; that is,

P{τd < ∞} = 1 − ψ ′(0+)
Φ(d)

d
,

when the net profit condition ψ ′(0+) > 0 is verified.
More generally, using Itô’s excursion theory for spectrally negative Lévy processes, this

Parisian risk model with exponential implementation delays can also be defined when the
underlying surplus process has paths of unbounded variation. It suffices to mark the Pois-
son point process of excursions away from zero (see [20] for a definition of the correspond-
ing excursion process) with independent copies of the generic random variable ed , similar
to the proof of Theorem 6.16 in [14]; for an excursion away from zero starting above zero,
this time spent above zero is simply ignored. As a consequence, Theorem 1 provides a gen-
eralization of the probability of ruin in a general Lévy insurance risk model with expo-
nential implementation delays. Finally, note that the probability of ruin in a general Lévy
insurance risk model with deterministic implementation delays has recently been computed;
see [18].
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