期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:115
Large deviations of kernel density estimator in L1(Rd) for uniformly ergodic Markov processes
Article
Lei, LZ ; Wu, LM
关键词: large deviations;    kernel density estimator;    Donsker-Varadhan entropy;    uniformly ergodic Markov process;    Bahadur efficiency;   
DOI  :  10.1016/j.spa.2004.09.004
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider a uniformly ergodic Markov process (X-n)(ngreater than or equal to0) valued in a measurable subset E of R-d with the unique invariant measure mu(dx) =f(x)dx, where the ME density f is unknown. We establish the large deviation estimations for the nonparametric kernel density estimator f(n)* in L-1(R-d, dx) and for parallel tof(n)* - fparallel to(L1(Rd.dx)) and the asymptotic optimality f(n)* in the Bahadur sense. These generalize the known results in the i.i.d. case. (C) 2004 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2004_09_004.pdf 351KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:2次