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Received 24 October 2003; received in revised form 17 May 2004; accepted 15 September 2004

Available online 8 October 2004
Abstract

In this paper, we consider a uniformly ergodic Markov process ðX nÞnX0 valued in a

measurable subset E of Rd with the unique invariant measure mðdxÞ ¼ f ðxÞdx; where the

density f is unknown. We establish the large deviation estimations for the nonparametric

kernel density estimator f �n in L1ðRd ; dxÞ and for kf �n � f kL1ðRd ;dxÞ; and the asymptotic

optimality f �n in the Bahadur sense. These generalize the known results in the i.i.d. case.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let fX n; nX0g be a Doeblin recurrent Markov chain valued in a Borel measurable
subset E of Rd ; defined on the probability space ðO; ðFnÞn2N;F; ðPxÞx2EÞ; with
(unknown) transition kernel Pðx; dyÞ: Moreover, we assume that the unique
see front matter r 2004 Elsevier B.V. All rights reserved.

.spa.2004.09.004

supported by the Yangtze professorship program.
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invariant measure m of P is absolutely continuous, i.e., mðdxÞ ¼ f ðxÞdx where the
density f is unknown.

Let K be a measurable function such that

KX0;

Z
Rd

KðxÞdx ¼ 1 (1.1)

and set KhðxÞ ¼
1
hd K x

h

� �
: Given the observed sample fX 0; . . . ;X n�1g; we consider the

empirical measure Ln ¼
1
n

Pn�1
i¼0 dX i

and define the kernel density estimator of the
unknown f as usually as

f �nðxÞ ¼ Khn
� dLnðxÞ ¼

1

n

Xn�1
i¼0

1

hd
n

K
x� X i

hn

� �
; x 2 Rd ; (1.2)

where fhn; nX0g is a sequence of positive numbers (bandwidth) satisfying

hn ! 0; nhd
n !þ1 as n !1: (1.3)

A natural measure of closeness of f �n to the unknown f is its L1ðRdÞ :¼L1ðRd ; dxÞ

distance below,

D�
n ¼

Z
Rd

jf �nðxÞ � f ðxÞjdx: (1.4)

The limit behavior of f �n in L1ðRd Þ is a subject of current study.
In the i.i.d. case, Devroye [6] proved that all types of L1ðRd Þ-consistency are

equivalent to condition (1.3) on the bandwidth ðhnÞ: Csörgö and Horváth [3] and
Horváth [11] investigated the asymptotic normality of D�

n: Louani [16] established
the large deviation principle (LDP in short) of D�

n:Gao [8] obtained the LDP and the
moderate deviation principle of f �n in L1ðRdÞ: And recently Lei et al. [14] prove the
weak LDP of f �n in L1ðRdÞ; and show that the corresponding LDP is false. More
recently Gao [9] obtains the moderate deviation principle of f �n in L1ðRdÞ and the law
of the iterated logarithm for D�

n: Giné et al. [10] establish a functional central limit
theorem and a Glivenko–Cantelli theorem.

How to extend those results from the i.i.d. case to Markov processes (or dependent
case) is a very natural and important question. In fact, numerous practical
models from economic time series or biologies are Markov process (cf. [2]), for
which it is very important to estimate the asymptotic equilibrium measure
mðdxÞ ¼ f ðxÞdx: Known works in the dependent case are concentrated on the
consistency of f �n and its asymptotic normality, see Peligrad [18], Bosq et al. [1] and
the references therein. But few are known about the large deviations of f �n and D�

n in
the dependent case.

In a recent work [15], as a first step towards the large deviations of f �n; we prove the
exponential convergence of f �n to f for a f-mixing sequence ðX nÞ: In this paper which
is a sequel to [15], we investigate the large deviations of f �n in L1ðRdÞ and of D�

n in the
framework of uniformly ergodic Markov chains (see H1 below).

Large deviation of occupation measures Ln for Markov processes is a traditional
subject in probability, initiated by Donsker and Varadhan [7]. The rate function is
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the Donsker–Varadhan level-2 entropy given by

JðnÞ :¼ sup

Z
log

u

Pu
dn; 1pu 2 bBðEÞ

� 	
; 8n 2 M1ðEÞ; (1.5)

where bBðEÞ is the space of real bounded functions measurable w.r.t. the Borel s-
field BðEÞ of E, and M1ðEÞ denotes the space of all probability measures on E.

Deuschel and Stroock [5, Theorem 4.1.14] obtained the LDP of Ln w.r.t. the t-
topology (i.e., the weakest topology on M1ðEÞ such that n! nðf Þ :¼

R
E

f ðxÞdnðxÞ is
continuous for all f 2 bBðEÞ), under the following:
H1 (Uniform ergodicity). There are 1plpN 2 N and MX1 such that

Plðx;AÞpM
Pðy;AÞ þ � � � þ PNðy;AÞ

N
; 8x; y 2 E;A 2 BðEÞ:

Later, a lot of significant progress has been made, see [4,23,13] and the references
therein.

This paper is organized as follows. The main results such as the weak�-LDP of f �n
on L1ðRdÞ; the large deviation estimation for PxðD

�
n4dÞ and the asymptotic

efficiency of the estimator f �n in the Bahadur sense, etc. are presented in the next
section. Those results are, as far as we know, obtained for the first time in the
dependent case. In Section 3, we prepare several lemmas. We give the proofs of the
main results in Sections 4–7.
2. Main results

Throughout this paper, we adopt the following notations. LpðRdÞ :¼LpðRd ; dxÞ;
LpðmÞ :¼LpðE;mÞ; kf k1 ¼ kf kL1ðRd ; dxÞ: We denote by bB (resp. bBðEÞ) the space of all
real bounded and Borel B-measurable functions on Rd (resp. E) equipped with the
sup norm kVk ¼ supx jV ðxÞj: We write nðV Þ ¼ hVin :¼

R
E

V ðxÞdnðxÞ: Without loss
of generality, we assume that ðX nÞnX0 is the system of coordinates on O :¼EN and Px

is the law of the Markov chain with the transition kernel P and the starting point
x 2 E: Set Pnð�Þ :¼

R
E
Pxð�ÞdnðxÞ and Enð�Þ ¼

R
O �dPn: Let ðyoÞn :¼onþ1 ðn 2 NÞ be

the shift on O:
When the bandwidth hn ! 0; f �n dx is ‘‘close’’ to Ln in the t-topology, so we may

hope that f �n dx satisfies the same LDP as Ln: This intuition is true:

Theorem 2.1. Assume H1 and hn ! 0 (without (1.3)). Then Pxðf
�
n 2 �Þ satisfies,

uniformly for the initial points x 2 E; the LDP in L1ðRd Þ w.r.t. the weak topology

sðL1;L1Þ; with the rate function given by

JðgÞ :¼
Jðg dxÞ if g 2 PðEÞ;

þ1 if g 2 L1ðRd ÞnPðEÞ:

�
(2.1)
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Here Jð�Þ is the Donsker–Varadhan level-2 entropy given in (1.5), PðEÞ is the set of all

probability density functions on Rd with support in E, i.e., those g 2 L1ðRdÞ such that

gX0 on Rd ; g ¼ 0; a:e: on Ec :¼RdnE and
R
Rd gdx ¼ 1:

More precisely, J is inf-compact on ðL1ðRdÞ;sðL1;L1ÞÞ; and for any measurable

subset A of L1ðRdÞ;

� inf
g2Aos

JðgÞp lim inf
n!1

1

n
log inf

x2E
Pxðf

�
n 2 AÞ

p lim sup
n!1

1

n
log sup

x2E

Pxðf
�
n 2 AÞp� inf

g2Ā
s

JðgÞ;

where Aos; Ā
s

denote, respectively, the interior and the closure of A w.r.t. the weak

topology sðL1;L1Þ:

The LDP w.r.t. the weak topology on L1ðRd Þ above is of the same type as the
classical results for Ln w.r.t. the t-topology. But it is too weak in the sense that it
does not entail the consistency, i.e., D�

n ! 0 in probability. For statistical issues, the
main objects to be studied are
(i)
 Pxðkf
�
n � gk1odÞ where g 2 PðEÞ is fixed, which is important in the hypothesis

testing: H0 : dmðxÞ ¼ f ðxÞdx against H1 : dmðxÞ ¼ gðxÞdx; or

(ii)
 PxðD

�
n4dÞ; whose statistical importance is obvious.
Unfortunately Theorem 2.1 cannot be applied for them, since f ~g 2 L1ðRdÞ; k ~g� gk1
odg is not open in sðL1;L1Þ and f ~g 2 L1ðRdÞ; k ~g� f k1Xdg is not closed in
sðL1;L1Þ: They are objects of

Theorem 2.2. Assume H1 and (1.3). Then Pxðf
�
n 2 �Þ satisfies, uniformly for initial

state x 2 E; the weak�-LDP on ðL1ðRdÞ; k � k1Þ with the rate function JðgÞ given by

(2.1), i.e., for any g 2 L1ðRd Þ;

lim
d!0

lim inf
n!1

1

n
log inf

x2Rd
Pxðkf

�
n � gk1odÞ

¼ lim
d!0

lim sup
n!1

1

n
log sup

x2Rd

Pxðkf
�
n � gk1odÞ ¼ �JðgÞ: ð2:2Þ

Notice that the corresponding (good) LDP is in general not true, because even in
the i.i.d. case, JðgÞ ¼ Jiid ðgÞ ¼

R
gðxÞ log gðxÞ

f ðxÞ
dx (for g 2 PðEÞ and g dx5f dx) is not

inf-compact on ðL1ðRdÞ; k � k1Þ (as noted in [14]).

Theorem 2.3. Assume H1 and (1.3). Then
(a)
 For any d40;

�IðdÞp lim inf
n!1

1

n
log inf

x2Rd
Pxðkf

�
n � f k14dÞ

p lim sup
n!1

1

n
log sup

x2Rd

Pxðkf
�
n � f k14dÞp� Iðd�Þ; ð2:3Þ
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where

IðdÞ ¼ inffJðgÞ; g 2 PðEÞ; kg� f k14dg: (2.4)
(b)
 We have for any d40;

IðdÞX
1

l
ðI iid ðdÞ � log MÞ; (2.5)

where l;M are given in H1 and I iid ðdÞ is the rate function of the LDP of kf �n � f k1
in the case where ðX nÞ are i.i.d. of common law m (see (2.9) below).
(c)
 Besides H1, assume that P is aperiodic. Then we also have

IðdÞX
d2

8ð1þ SÞ2
; 8d40; (2.6)

where S :¼
P1

k¼1 supx;y2E kP
kðx; �Þ � Pkðy; �ÞkTV (here k � kTV denotes the total

variation) is finite.
Remark 2.1. Parts (b) and (c) of Theorem 2.3 are served for d large or small,
respectively. By the contraction principle and the LDP of Ln under H1 in [5,
Theorem 4.1.14], for each V 2 bBðEÞ; LnðV Þ � mðV Þ satisfies the LDP with the inf-
compact rate function given by

JV ðrÞ ¼ inffJðnÞ; nðV Þ ¼ mðV Þ þ rg; 8r 2 R: (2.7)

Since JV ð0Þ ¼ 0 and JV is convex with values in ½0;þ1�; JV is non-
decreasing and left continuous on ½0;þ1Þ: Consequently using kn� mkTV ¼
supkVkp1 ½nðV Þ � mðV Þ� ¼ 2 supA2B jnðAÞ � mðAÞj (for two probability measures
m; n), we can identify IðdÞ given in (2.4) as

IðdÞ ¼ inffJðnÞj sup
kVkp1

½nðV Þ � mðV Þ�4dg

¼ inf
kVkp1

inf
r4d

JV ðrÞ ¼ inf
kVkp1

JV ðdþÞ

¼ inf JðnÞj sup
A2BðEÞ

½ðnðAÞ � mðAÞ�4d=2

( )
¼ inf

A2BðEÞ
JAðd=2þÞ; ð2:8Þ

where JA ¼ J1A
: In the i.i.d. case, the last expression in (2.8) above coincides exactly

with the rate function of the LDP for D�
n found by Louani [16]. Indeed, when

mðAÞ ¼ a 2 ð0; 1Þ; then for any d40; Jiid
A ðd=2Þ is given by

Gþa ðdÞ ¼
aþ d

2

� �
log 1þ d

2a

� �
þ 1� a� d

2

� �
log 1� d

2ð1�aÞ


 �
if 0odo2� 2a;

þ1; otherwise

(

(then Jiid
A ðd=2Þ ¼ Jiid

A ðd=2þÞ) and

I iid ðdÞ :¼ inf
a2ð0;1Þ

Gþa ðdÞ ¼ inf
A

Jiid
A ðd=2Þ (2.9)

which is I iid in [16].
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Remark 2.2. If I were strict increasing on ð0; aÞ where a :¼ supfr40; IðrÞoþ1g; then
we can prove in fact the LDP of D�

n in Rþ with the rate function d! Iðd�Þ; from
(2.3).

In the results above, we have the large deviation estimates of the estimator f �n;
useful in statistics. We now show that f �n is asymptotically optimal in the Bahadur
sense. Let Y be the set of unknown data ðP;mÞ verifying H1 and mðdxÞ5dx:
Given a subsetD of the unit ball in bB; we say that an estimator Tnð�Þ :¼Tnð�;X 0; . . . ;
X n�1Þ 2 L1ðRdÞ is an asymptotically sðL1;DÞ-consistent estimator of the density f,
if 8V 2 D;Z

Rd

TnðxÞV ðxÞdx !

Z
Rd

f ðxÞV ðxÞdx

in probability measure Pm: From the results above, we shall derive:

Theorem 2.4. Given ðP; mÞ 2 Y; let ððX nÞ; ðPxÞx2EÞ be the associated Markov process.
(a)
 (Bahadur type lower bound). Assume that D is dense in the unit ball of L1ðRd Þ

w.r.t. the weak� topology sðL1;L1Þ: Then for any sðL1;DÞ-asymptotically

consistent estimator Tn of the density f,

lim inf
r!0þ

1

r2
lim inf

n!1

1

n
log PmðkTn � f k14rÞ

X�
1

2 supkVkp1 s2ðV Þ
¼ �

1

8 supA2B s2ð1AÞ
; ð2:10Þ

where

s2ðV Þ :¼VarmðV Þ þ 2
X1
k¼1

hV � mðV Þ;PkVim:

If moreover kTn � Tn � y
N
k1pdn ! 0; then (2.10) still holds with Pm substituted

by infx2E Px:

(b)
 (Asymptotic efficiency of f �n in the Bahadur sense). If hn verifies (1.3), then

lim inf
r!0þ

1

r2
lim

n!1

1

n
log inf

x2E
Pxðkf

�
n � f k14rÞ

¼ lim sup
r!0þ

1

r2
lim

n!1

1

n
log sup

x2E

Pxðkf
�
n � f k14rÞ

¼ �
1

2 supkVkp1 s2ðV Þ
¼ �

1

8 supA2B s2ð1AÞ
: ð2:11Þ
Thus f �n is an asymptotically efficient estimator of f in the Bahadur sense. And
1=s2ðV Þ can be interpreted as the Fisher information at the direction V of our
statistical model Y:

All the results above except perhaps Theorem 2.4(a) are, as far as we know, new in
the dependent case.
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Remark 2.3. In comparison with the i.i.d. case, the new object in the Markov chain
case is the transition kernel density pðx; yÞ :¼Pðx;dyÞ=dy: For its estimation or more
precisely F ðx; yÞ :¼ f ðxÞpðx; yÞ; no more effort is required due to the subtleness of our
assumption H1. Indeed, consider the Markov chain Y n :¼ðX n;X nþ1Þ with values in
E2; whose transition kernel still verifies H1 and whose unique invariant measure is
F ðx; yÞdxdy: The Donsker–Varadhan level-2 entropy for this new Markov chain
possesses an explicit expression [5]:

Jð2ÞðQÞ :¼

R R
E�E

Qðdx; dyÞ log Qðx;dyÞ
Pðx;dyÞ

if Q 2 Ms
1ðE

2Þ; Qðx; �Þ5Pðx; �Þ;

þ1 otherwise;

(

(2.12)

where Q 2 Ms
1ðE

2Þ iff Q 2 M1ðE
2Þ and QðA� EÞ ¼ QðE � AÞ; 8A 2 BðEÞ; and

Qðx;dyÞ is the regular conditional distribution of the second coordinate X 1 knowing
the first X 0 ¼ x: Consider the kernel density estimator

F�nðx; yÞ :¼
1

n

Xn�1
k¼0

Khn
ðx� X kÞ � Khn

ðy� X kþ1Þ:

Hence the previous results apply for F�n if condition (1.3) is substituted by hn ! 0
and nh2d

n !þ1:
3. Several lemmas

For every V 2 bBðEÞ; put PV ðx; dyÞ :¼ eV ðxÞPðx;dyÞ: We have the Feynman–Kac
formula

ðPV Þ
nf ðxÞ ¼ Exf ðX nÞ exp

Xn�1
k¼0

V ðX kÞ:

Let kðPV Þ
n
k :¼ supkf kp1 kðP

V Þ
nf k ¼ kðPV Þ

n1k be the norm of PV acting on bBðEÞ:
Consider the uniform Cramer functional [5]

LðV Þ ¼ lim
n!1

1

n
log kðPV Þ

n
k ¼ lim

n!1

1

n
log sup

x2E

Ex exp
Xn�1
k¼0

V ðX kÞ

 !
;

then eLðV Þ is the spectral radius of PV on bBðEÞ: It is well known [5] that

JðnÞ ¼ supfnðV Þ � LðV Þ; V 2 bBðEÞg; 8n 2 M1ðEÞ: (3.1)

By the LDP of Ln in [5] and the Laplace principle due to Varadhan, 8V 2 bBðEÞ;

LðV Þ ¼ supfnðV Þ � JðnÞ; n 2 M1ðEÞg ¼ sup

Z
gV dm� JðgÞ; g 2 PðEÞ

� 	
;

(3.2)

where the second equality follows from the fact that if JðnÞoþ1; then n5m under
H1 (see [23, B.23]).
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By H1, Plðx;dyÞpMmðdyÞ: Hence for each V 2 bBðEÞ;

LðV Þ ¼ lim
n!1

1

n
log Em exp

Xn�1
k¼0

V ðX kÞ

 !
: (3.3)
Lemma 3.1. For positive operator PV defined as above, let ðPV Þ
� be the dual operator

of PV w.r.t. m: Then
(a)
 There exist f 2 bBðEÞ; c 2 bBðEÞ both strictly positive, such that

PVf ¼ eLðV Þf over E; ðPV Þ
�c ¼ eLðV Þc; m-a:s:

and the following Harnack inequalities hold:

fðyÞ
fðxÞ

_
cðyÞ
cðxÞ

p
M

N
� e2NkVk �

PN
k¼1 e

kLðV Þ

elLðV Þ pMe3NkVk; 8x; y 2 E: (3.4)
(b)
 Put

QV ðx; dyÞ ¼
fðyÞ

eLðV ÞfðxÞ
eV ðxÞPðx; dyÞ;

then QV is Doeblin recurrent, and nV :¼fcm is the unique invariant probability

measure for QV :
Proof. (a) Under H1, Plðx; dyÞpMmðdyÞ and then PN ðx; dyÞpMmðdyÞ: Thus ðPV Þ
N

is uniformly integrable in L1ðmÞ in the terms of [23]. By Theorem 3.2 in [23], there
exists some 0pj 2 L1ðmÞ such that mðjÞ40 and

ðPV Þ
Nj ¼ rNj; m-a:s:;

where r is the spectral radius of PV in L1ðmÞ: Since ðPV Þ
N
ðx;dyÞpeNkVkMmðdyÞ; then

letting g :¼ðPV Þ
Nj; we see that ðPV Þ

Ng ¼ rNg everywhere over E. By (3.3), r ¼ eLðV Þ:
Finally setting

fðxÞ ¼
XN

k¼1

ðPV Þ
kgðxÞ;

which is strictly positive by H1, we have for all x 2 E;

PVfðxÞ ¼ rfðxÞ ¼ eLðV ÞfðxÞ; 8x 2 E:

Since for any x; y;

fðyÞ
fðxÞ

¼
ðPV Þ

lfðyÞPN
k¼1 ðP

V Þ
kfðxÞ

�

PN
k¼1 e

kLðV Þ

elLðV Þ ;
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using H1 and �kVkpV ðxÞpkVk; we get

fðyÞ
fðxÞ

p
M

N
� e2NkVk �

PN
k¼1 e

kLðV Þ

elLðV Þ

where the desired Harnack inequality (3.4) for f follows.
For the corresponding result about ðPV Þ

�; we choose a kernel P�ðx; dyÞ; which is
the dual of P (w.r.t. m) and also satisfies H1. Applying the previous argument to
eV ðyÞP�ðx;dyÞ which is the dual of PV (w.r.t. m), we get the existence of c and the
Harnack inequality (3.4) for c:

(b) It is easy to verify that QV is a Markov kernel, and fcm is an invariant measure
of QV : As QV again satisfies H1 by part (a), it is Doeblin recurrent. Then fcm is the
unique invariant measure of QV : &

Lemma 3.2. Under H1, we have for every V 2 bBðEÞ such that kVkp1; 8r40; nX1
so that 4N=npr;

sup
x2E

Px

1

n

Xn�1
k¼0

V ðX kÞ4mðV Þ þ r

 !
pM exp �nJV r�

4N

n

� �� �
; (3.5)

where JV ðrÞ is the rate function governing the LDP of LnðV Þ � mðV Þ; given in (2.7).

Notice that in the i.i.d. case, M ¼ N ¼ 1 and (3.5) is exactly the well-known
Cramer inequality. This lemma is basic to Theorem 2.3.

Proof (following closely [5]). (1) At first by Deuschel and Stroock [5, Lemma 4.1.4],

pnðrÞ :¼ inf
x2E

Px
1

n

Xn�1
k¼0

V ðX kÞ4mðV Þ þ r

 !

is super-multiplicative, i.e., pnþmXpnpm; 8n;m 2 N�: Thus

1

n
log pnðrÞp sup

mX1

log pmðrÞ

m
¼ lim

m!1

log pmðrÞ

m
:

But by the uniform LDP of LnðV Þ ¼
1
n

Pn�1
k¼0 V ðX kÞ in [5] and the increasingness of

JV on Rþ; we have limm!1
log pmðrÞ

m
p�JV ðrÞ for every rX0: Thus

inf
x2E

Px

1

n

Xn�1
k¼0

V ðX kÞ4mðV Þ þ r

 !
pe�nJV ðrÞ; 8nX1; rX0: (3.6)

(2) For every k ¼ 1; . . . ;N ; since

jLnðV Þ � y
k
� LnðV Þjp

2k

n
p

2N

n
;
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letting � ¼ 2N
n
; we have for any r 2 R; nX1 and x 2 E;

f n;rðxÞ :¼Px LnðV Þ4mðV Þ þ rð ÞpPxðLnðV Þ � y
k4mðV Þ þ r� �Þ

¼ ðPkf n;r��ÞðxÞ

and similarly

f n;rðxÞXPxðLnðV Þ � y
k4mðV Þ þ rþ �Þ ¼ ðPkf n;rþ�ÞðxÞ:

Thus using H1, we obtain for any x; y 2 E;

f n;rðxÞpðP
lf n;r��ÞðxÞpM

1

N

XN

k¼1

ðPkf n;r��ÞðyÞpMf n;r�2�ðyÞ:

Hence the desired result follows by (3.6). &

The following result is technically crucial for all results in this paper.

Lemma 3.3. (a) LðV Þ is Gateaux-differentiable on bBðEÞ:
(b) If V n ! V in measure m and supn kV nkpC; then LðV nÞ ! LðV Þ:

Proof. (a) Under H1, ðPV Þ
N is uniformly integrable in L1ðmÞ; then by [23,

Proposition 2.1], ðPV Þ
2N is compact in L1ðmÞ . Consequently by the perturbation

theory of linear operators [12, Chapter VII, Theorem 1.8], the largest
eigenvalue e2NLðV Þ of ðPV Þ

2N ; is real-analytic, i.e., LðV þ t ~V Þ is analytic on t 2 R

for any V ; ~V 2 bB fixed.
(b) At first lim infn!1LðV nÞXLðV Þ by (3.2). Notice that eNLðV Þ is the spectral

radius of ðPV Þ
N in L1ðmÞ: Now the inverse inequality lim supn!1LðVnÞpLðV Þ;

follows by [23, Proposition 3.8] applied to pn :¼ðP
VnÞ

N : &

Lemma 3.4 (Gibbs type principle). Given a function V 2 bBðEÞ; a probability measure

n on E satisfies

JðnÞ ¼ hn;Vi � LðV Þ

iff n ¼ nV :¼fcm; where f (resp. c) is the right (resp. left) eigenfunction of PV

associated with eLðV Þ given in Lemma 3.1(a) verifying mðfcÞ ¼ 1:

Proof. Recall at first that

JðnÞ ¼ inf J ð2ÞðQÞ; Q 2 Ms
1ðE

2Þ;QðA� EÞ ¼ nðAÞ; 8A 2 BðEÞ
� �

; (3.7)

where J ð2ÞðQÞ is given in (2.12) (cf. [7,5]).
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‘‘(¼’’ Let QV
ðdx; dyÞ ¼ nV ðdxÞQV ðx; dyÞ: By definition (2.12), we have

Jð2ÞðQV
Þ ¼ EQ

V

log
QV ðx;dyÞ

Pðx;dyÞ
¼ EQ

V

log
fðyÞ

eLðV ÞfðxÞ
� eV ðxÞ

¼

Z
log

eV ðxÞ

eLðV Þ
dnV ðxÞ ¼ hV ; nV i � LðV Þ: ð3:8Þ

By (3.7), JðnV ÞphV ; nV i � LðV Þ and the equality holds by (3.1).
‘‘¼)’’ It is well known from the convex analysis that

JðnÞ ¼ hn;Vi � LðV Þ () n 2 @LðV Þ; (3.9)

where @LðV Þ denotes the set of sub-differentials of Lð�Þ at V (which is contained in
the topological dual space ðbBðEÞÞ0 to which M1ðEÞ is embedded). Since nV 2 @LðV Þ
(by the sufficiency above) and LðV Þ is Gateaux-differentiable on bB by Lemma 3.3,
@LðV Þ is the singleton fnV g: &

The following lemma is a main result in [15], which will be crucial in the proof of
the lower bound in Theorem 2.2.

Lemma 3.5 (Lei and Wu [15, Theorem 2.1]). Given a stationary sequence ðX iÞi2N
valued in E such that mðdxÞ ¼ PðX i 2 dxÞ ¼ f ðxÞdx: Let ðfkÞkX1 be the f-mixing

coefficient of ðX iÞi2N: Assume (1.3) and

Sf :¼
X1
k¼1

fkoþ1: (3.10)

Let D�
n be given by (1.2). Then D�

n ! 0 exponentially as n !1; i.e.,

lim sup
n!1

1

n
log PðD�

n4dÞo0; 8d40:

Corollary 3.6. If P is a Doeblin recurrent [17] Markov kernel on E with the unique

invariant probability measure dmðxÞ ¼ f ðxÞdx; then

lim sup
n!1

1

n
log PmðD

�
n4dÞo0; 8d40:

Proof. If P is moreover aperiodic, then Sfoþ1 (well known, see the proof of
Theorem 2.3(c) in Section 6) and this corollary follows directly from Lemma 3.5. Now
assume that P is of period d41: By the classical theory of Markov chains in [17], we
have the following cyclic decomposition: E ¼N [ E1 [ � � � [ Ed where mðNÞ ¼ 0 and
(i)
 N;E1; . . . ;Ed are disjoint;

(ii)
 Pðx;Eiþ1Þ ¼ 1; 8x 2 Ei (here Edþ1 :¼E1);

(iii)
 there are C40 and r 2 ð0; 1Þ such that
sup
x2Ei

kPnd ðx; �Þ � mikTVpCrn; 8nX0; i ¼ 1; . . . ; d;
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where f i ¼ f 1Ei
d and mi ¼ d1Ei

m ¼ f i dx: Let

f �n;dðxÞ :¼
1

n

Xn�1
k¼0

Khn
ðx� X dkÞ:

Since Pd jEi
is Doeblin recurrent and aperiodic on Ei by property (iii) above, we have

by Lemma 3.5,

lim sup
n!1

1

n
log Pmi

ðkf �n;d � y
j
� f iþjk14dÞo0; 8d40

for all i; j ¼ 1; . . . ; d where i þ j :¼ i þ jðmod dÞ: As f �nd ðxÞ ¼
1
d

Pd
j¼1 f �n;d � y

j and f ¼
1
d

Pd
j¼1 f iþj ; then we get for any d40 and i ¼ 1; . . . ; d

lim sup
n!1

1

nd
log Pmi

ðkf �nd � f k14dÞ

p lim sup
n!1

1

nd
log

Xd

j¼1

Pmi
ðkf �n;d � y

j
� f iþjk14dÞo0;

where the desired result follows. &

Lemma 3.7. Under H1, we have:
(a)
 for any kX1; there exists some d40 such that

sup
jtjpd

sup
kVkp1

dk

dtk
LðtV Þ

�����
�����oþ1

and for every V 2 bBðEÞ; L00ðtV Þjt¼0 ¼ s2ðV Þ;

(b)
 the rate function JV given in (2.7) satisfies

JV ðrÞ ¼
supt2R ðt½ðrþ mðV Þ� � LðtV ÞÞ; 8r 2 R;

suptX0 ðt½ðrþ mðV Þ� � LðtV ÞÞ; 8rX0

�
(3.11)

and JV is strictly convex on ½JVoþ1�0 ¼ ða; bÞ where a ¼ limt!�1
d
dt
LðtV Þ �

mðV Þ and b ¼ limt!þ1
d
dt
LðtV Þ � mðV Þ (in particular JV is strictly increasing and

continuous in ½0; bÞ); moreover

lim
r!0þ

JV ðrÞ

r2
¼

1

2s2ðV Þ
2 ð0;þ1�:
Proof. (a) We shall follow the approach in [21], in which it is assumed that 1 is
the unique isolated eigenvalue z 2 C of P in bBðEÞ such that jzj ¼ 1: Under H1, the
last assumption is satisfied if P is aperiodic. Let us see how to bypass this
assumption.

Under H1, recall the cyclic decomposition E ¼N [
Sd

i¼1 Ei in the proof of
Corollary 3.6 above. Let us consider Pd jEi

which is Doeblin recurrent on Ei;
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aperiodic, with the unique invariant probability measure mi: Hence 1 is the unique
isolated eigenvalue z 2 C of Pd jEi

in bBðEiÞ such that jzj ¼ 1:
For each V 2 bBðEÞ; consider the following operator acting on bBðE1Þ:

RV f ðxÞ :¼Exf ðX dÞe
Pd�1

k¼0
V ðX kÞ ¼ ðPV Þ

d
jE1

f ðxÞ; 8x 2 E1:

It is obvious that the spectral radius rspðR
V Þ of RV in bBðE1Þ is not greater than

rspððP
V Þ

d
Þ ¼ edLðV Þ: On the other hand, by the LDP in [5] for any initial measure and

the fact that ðPV Þ
d1Ec

1
¼ 0 on E1; we have

log rspðR
V ÞX lim

n!1

1

n
log m1½ðP

V Þ
nd1E1

�

¼ lim
n!1

1

n
log m1½ðP

V Þ
nd1�

¼ dLðV Þ:

Thus rspðR
V Þ ¼ edLðV Þ:

As in [21], we will apply the analytical perturbation theory of Kato [12]. For each
z 2 C; consider RzV acting on the complexified space bCBðEiÞ; which is analytical in z

in the sense of [12]. Then for any Z 2 ð0; 1=2Þ sufficiently small, there exists d40 and
C40 such that for all V 2 bBðEÞ with kVkp1;
(1)
 the eigenvalue lmaxðR
zV Þ of RzV with the largest modulus is isolated in the

spectrum of RzV and jlmaxðR
zV Þ � 1jpZ for jzjp2d;
(2)
 for all jzjp2d; the eigenprojection Eðz;V Þ of RzV associated with lmaxðR
zV Þ is

unidimensional and

kEðz;V Þ1E1
� 1E1

ko1=2; kðRzV Þ
n
ðI � Eðz;V ÞÞkpCð1� 2ZÞnd ; 8n;
(3)
 z ! lmaxðR
zV Þ and z ! Eðz;V Þf is analytic in z for jzjp2d;
where properties (1) and (2) follow by [12, Chapter IV, Theorem 3.16] and property
(3) by [12, Chapter VII, Theorem 1.8].

Then LðzV Þ :¼ 1
d
log lmaxðR

zV Þ is analytic for jzjp2d and coincides with LðtV Þ
when z ¼ t 2 ½�2d; 2d� � R:

Let LnðzV Þ :¼ 1
nd

log Em1 expð
Pnd�1

k¼0 zV ðX kÞÞ ¼
1

nd
logh1; ðRzV Þ

n1im1 : By the proper-
ties (1) and (2) above, we have

h1; ðRzV Þ
n1im1 ¼ endLðzV Þh1;Eðz;V Þ1im1 þOðð1� 2ZÞnd

Þ;

where it follows that LnðzV Þ ! LðzV Þ uniformly over z : jzjp2d and V : kVkp1:
Thus by Cauchy’s theorem and property (3) above,

sup
kVkp1

sup
jzjpd

dk

dzk
LðzV Þ

�����
�����oþ1;

sup
kVkp1

sup
jzjpd

dk

dzk
LnðzV Þ �

dk

dzk
LðzV Þ

�����
�����! 0:
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Applying the above estimate to k ¼ 2 and notice that Emi
Pd

k¼1 V ðX kÞ ¼ dmðV Þ;

L00nðtV Þjt¼0 ¼
1

nd
Em1

Xnd�1

k¼0

V ðX kÞ � Em1
Xnd�1

k¼0

V ðX kÞ

 !2

! VarPm1

Xd�1
k¼0

V ðX kÞ

 !
þ 2

X1
n¼1

CovPm1

Xd�1
k¼0

V ðX kÞ;
Xd�1
k¼0

V ðX ndþkÞ

 !
:

From the cyclic decomposition, we see that the last quantity above is exactly s2ðV Þ:
Thus L00ðtV Þjt¼0 ¼ s2ðV Þ:

(b) By the LDP of Ln in [5] and the Laplace principle due to Varadhan, we have
for all t 2 R;

Lðt½V � mðV Þ�Þ ¼ supfnðtV Þ � tmðV Þ � JðnÞ; n 2 M1ðEÞg ¼ sup
r2R

ftr� JV ðrÞg;

Hence the Legendre–Fenchel theorem gives us

JV ðrÞ ¼ sup
t2R

ftr� Lðt½V � mðV Þ�Þg ¼ sup
t2R

ftðrþ mðV Þ� � LðtV Þg; 8r 2 R

for Lðt½V � mðV Þ�Þ ¼ LðtV Þ � tmðV Þ: When rX0; since d
dt
LðtV Þjt¼0 ¼ mðV Þ; the

supremum above can be taken only for tX0: Then (3.11) is proved.
All other properties of JV ðrÞ ¼ supt2R ðtr� Lðt½V � mðV Þ�ÞÞ are easy consequences

of the elementary convex analysis. &

Lemma 3.8 (Bishop–Phelps, cf. [20] or [22]). Assume L is a convex real function on

a Banach space Y. Assume xo 2 Y 0 (the topological dual space) satisfies:

9c 2 R : LðyÞXhx0; yi � c; 8y 2 Y

then 8y 2 Y ;8�40; 9y0 2 Y ; x0 2 @Lðy0Þ; such that

kx0 � x0kp�; ky0 � ykp
1

�
ðLðyÞ � hx0; yi þ L�ðx0ÞÞ;

where L�ðxÞ :¼ supfhx; yi � LðyÞ j y 2 Y gÞ; 8x 2 Y 0; is the Legendre transformation

of LðyÞ:
4. Proof of Theorem 2.1

The desired LDP of f �n in ðL1ðRdÞ;sðL1;L1ÞÞ is equivalent to the LDP of f �nðxÞdx

on M1ðR
d Þ w.r.t. the t-topology sðM1ðR

dÞ; bBÞ: Since LðV1EÞ is Gateaux-
differentiable on bB by Lemma 3.3(a), by the abstract Gärtner–Ellis theorem [22,
p. 290, Theorem 2.7], it is enough to show that for each V 2 bB;

lim inf
n!1

1

n
log inf

x2E
Ex exp n

Z
Rd

f �nðyÞV ðyÞdy

� �

¼ lim sup
n!1

1

n
log sup

x2E

Ex exp n

Z
Rd

f �nðyÞV ðyÞdy

� �
¼ LðV1EÞ ð4:1Þ
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and LðV1EÞ is monotonely continuous at 0, i.e., if ðVnÞ is a sequence in bB
decreasing pointwise to 0 over Rd ; then LðV n1EÞ ! 0:

The last condition is satisfied by Lemma 3.3(b). It remains to verify (4.1). Put
V n ¼ ðKhn

� V Þ1E ; then kVnkpkVk and,

n

Z
Rd

f �nðyÞV ðyÞdy ¼
Xn�1
k¼0

VnðX kÞ:

Consequently letting fn be the right eigenfunction of PV n associated with eLðVnÞ; and
C :¼Me3NkVk; we have by Lemma 3.1(a) that for each x 2 E;

Ex exp n

Z
Rd

f �nðyÞV ðyÞdy

� �
pCEx fnðX nÞ

fnðxÞ
exp

Xn�1
k¼0

VnðX kÞ

 !

¼ C
ðPV nÞ

nfnðxÞ

fnðxÞ
¼ CenLðVnÞ

and similarly

Ex exp n

Z
Rd

f �nðyÞV ðyÞdy

� �
X

1

C
Ex fnðX nÞ

fnðxÞ
exp

Xn�1
k¼0

V nðX kÞ

 !
¼

1

C
enLðVnÞ:

Noting that V n ! V1E ; dx-a:e:; we have LðVnÞ ! LðV1EÞ by Lemma 3.3(b). Thus
the two estimations above yield the desired relation (4.1).

5. Proof of Theorem 2.2

Part 1 (Large deviation upper bound). This is an easy consequence of Theorem 2.1.
In fact, for any g 2 L1ðRd Þ and d fixed, as f ~g 2 L1ðRdÞ; k ~g� gk1pdg is closed in the
weak topology sðL1;L1Þ; then by Theorem 2.1,

lim sup
n!1

1

n
log sup

x2Rd

Pxðkf
�
n � gkL1ðRd ÞpdÞp� inf

~g:k ~g�gk1pd
Jð ~gÞ:

Letting d! 0; we get the desired result by the lower semi-continuity of J (which
follows from (3.1)).

Part 2 (Large deviation lower bound). It is enough to prove that for any g 2 P;

lim inf
n!1

1

n
log inf

x2E
Pxðkf

�
n � gk1odÞX� JðgÞ; 8d40:

Its proof, more difficult, is divided into three steps.
Step 1: We claim that it is enough to show that for any g 2 P and d40;

lim inf
n!1

1

n
log Pxðkf

�
n � gk1odÞX� JðgÞ; m-a:s: x 2 A (5.1)

for some A 2 BðEÞ charged by m: Indeed, if (5.1) is true, then by Egorov’s lemma,
there is some measurable U � A with mðUÞ40 such that

lim inf
n!1

1

n
log inf

x2U
Pxðkf

�
n � gk1odÞX� JðgÞ:
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Let tU :¼ inffnX1; X n 2 Ug be the first hitting time to U. By H1, we have
1
N

PN
k¼1 Pkðx; �ÞX 1

M
mð�Þ; then

inf
x2E

PxðtUpNÞX inf
x2E

Ex

PN
k¼1 1U ðX kÞ

N
X

mðUÞ
M

40:

Since

f �n � y
k :¼

1

n

Xkþn�1

i¼k

1

hd
n

K
x� X i

hn

� �

we have kf �n � f �n � ytU
k1p2N

n
on ½tUpN�: Thus by the strong Markov property, we

have for nXN such that 2N=nod=2;

inf
x2E

Pxðkf
�
n � gk1odÞX inf

x2E
PxðtUpNÞ � inf

y2U
Py kf �n � gk1o

d
2

� �
;

where the desired uniform lower bound follows from (5.1).
Step 2: For ‘‘g dx ¼ nV ’’ case. The idea of this step is to use change of measure.

Given V 2 bB; let QV be the transition kernel defined in Lemma 3.1 and nV ¼ fcm:
From Lemma 3.1, we know that QV is Doeblin recurrent.

Let QV
oð0Þ be the law of the Markov process with transition kernel QV and

the initial point oð0Þ; which is nV -a:s: well-defined on O ¼ EN; and QV :¼R
QV

oð0Þ dnV ðoð0ÞÞ: Denoting by xðoÞ the density of QV
oð0Þ w.r.t. Poð0Þ on sðX 1Þ; we

have for m-a:s: oð0Þ;

dQV
oð0Þðdo1; . . . ;donÞ

dPoð0Þ

�����
Fn

¼ exp
Xn�1
k¼0

log xðykoÞ

 !

and EQ
V

log x ¼ J ð2ÞðQV
jF1
Þ ¼ JðnV Þ by Lemma 3.4. For any �40; putting

W n :¼fo : kf �nðoÞ � gk1odg; Dn;� :¼ o :
1

n

Xn�1
n¼0

log xðykoÞpJðnV Þ þ �

( )
;

we have for m-a:s: oð0Þ;

Poð0ÞðW nÞX

Z
W n

exp �
Xn�1
k¼0

log xðykoÞ

 !
dQV

oð0Þ

X exp½�nðJðnV Þ þ �Þ� �QV
oð0Þ W n \Dn;�

� �
: ð5:2Þ

So to get (5.1), it remains to show that QV
oð0ÞðDn;�Þ ! 1 and QV

oð0ÞðW nÞ ! 1 for m-a:s:
oð0Þ; as n goes to infinity (for any �40).

By the ergodic theorem and the Fubini theorem, we have for nV � m-a:s: oð0Þ;

1

n

Xn�1
k¼0

log xðykoÞ ! EQ
V

log x ¼ JðnV Þ; QV
oð0Þ-a:s:;

where follows QV
oð0ÞðDn;�Þ ! 1: For the second limit, applying the crucial Corollary

3.6 to ððX nÞ;Q
V
Þ (where the condition is satisfied because ððX nÞ;Q

V
Þ is Doeblin
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recurrent by Lemma 3.1), we have

QV
ðW c

nÞ ! 0 exponentially rapidly:

Then by the Borel–Cantelli lemma,

QV
ðW c

n; infinitely oftenÞ ¼ 0:

By Fubini’s theorem, QV
oð0ÞðW

c
n; infinitely oftenÞ ¼ 0; for nV � m-a:s: oð0Þ:

Step 3: The general case. By Steps 1 and 2, it remains to show:

Claim. 8n ¼ gdx 2 M1ðR
d Þ satisfies JðgÞoþ1; there exists a sequence of ðnnÞ :¼

ðnVn
Þ; such that knV n

� nkTV ! 0 and lim supn!1 JðnVn
ÞpJðnÞ:

Let us construct this sequence by means of Bishop–Phelps theorem (Lemma 3.8).
For any nX1; we choose ~V n 2 bBðEÞ such that JðnÞohn; ~Vni � Lð ~VnÞ þ

1
n
(by (3.1)).

By Lemma 3.8, for each ~Vn and �n ¼
1

nðk ~V nkþ1Þ
; we can find V n 2 bBðEÞ; nVn

2

@LðV nÞ (which is a singleton fnVn
g by the proof of Lemma 3.4), such that

knVn
� nkTVp�n; k ~Vn � V nkp

1

�n

ðLð ~VnÞ � hn; ~V ni þ JðnÞÞ:

So

hnVn
� n;VnipknV n

� nkTV � kV n � ~Vnk þ knV n
� nkTV � k ~V nkp

2

n
:

As @LðVnÞ ¼ fnV n
g; we have,

JðnVn
Þ ¼ hnVn

;V ni � LðV nÞ ¼ hnVn
� n;V ni þ hn;V ni � LðV nÞp

2

n
þ JðnÞ:

This proves the claim. The proof of the theorem is completed.
6. Proof of Theorem 2.3

6.1. Proof of part (a) in Theorem 2.3

Its proof is divided into two parts.
Part 1 (Lower bound in (2.3)). The lower bound is an easy consequence of Theorem

2.1. Actually, as fg 2 L1ðRdÞ; kg� f k14dg is open in the weak topology sðL1;L1Þ;
we have by Theorem 2.1,

lim inf
n!1

1

n
log inf

x2E
Pxðkf

�
n � f k14dÞX� inf

g: kg�f k14d
JðgÞ ¼ �IðdÞ:

Part 2 (Upper bound in (2.3)). The proof of the upper bound is much more difficult,
and it is divided into three steps, where the first two steps are similar to [6] and the
third one is inspired by [16].
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Step 1 (Approximation of K). The purpose of this step is to show that we can
reduce to the case where K ¼ 1

jAj
1A; A :¼

Qd
i¼1 ½xi;xi þ aiÞ is a rectangle (here jAj

denotes the Lebesgue measure of A 2 B).
Given �40; we can find finite positive constants q, m, b1; . . . ; bm and disjoint

finite rectangles A1; . . . ;Am in Rd of form
Qd

i¼1 ½xi; xi þ aiÞ such that the
function

K ð�ÞðxÞ ¼
Xm

j¼1

bjIAj
ðxÞ

satisfies
R

K ð�ÞðxÞdx ¼ 1; K ð�Þpq and
R
jKðxÞ � K ð�Þjdxo�: Define

f ð�Þ;�n :¼K
ð�Þ
hn
� dLn ¼

1

n

Xn�1
k¼0

1

hd
n

K ð�Þ x� X k

hn

� �
:

Then

Z
jf �nðxÞ � f ð�Þ;�n ðxÞjdxp

Z
h�d

n

Z
K ð�Þ x� y

hn

� �
� K

x� y

hn

� �����
����LnðdyÞdx

¼

Z
Rd

jK � � K jðzÞdzp�:

Thus by the approximation lemma in large deviations [4] (more precisely, by the
same cycle of idea), it is enough to prove that f ð�Þ;�n satisfies the upper bound in (2.3).

Let Kj ¼ 1
jAj j

1Aj
; then K ð�Þ ¼

Pm
j¼1 ljK

j where
Pm

j¼1 lj ¼ 1 and lj40: Conse-
quently,

lim sup
n!1

1

n
log sup

x2E

Pxðkf
ð�Þ;�
n � f k14dÞ

p lim sup
n!1

1

n
log

Xm

j¼1

sup
x2E

PxðkK
j
hn
� dLn � f k14dÞ

¼ max
1pjpm

lim sup
n!1

1

n
log sup

x2E

PxðkK
j
hn
� dLn � f k14dÞ:

Thus for the upper bound in (2.3), we may (and will) assume that K ¼ 1
jAj

1A where
A :¼

Qd
i¼1 ½xi;xi þ aiÞ:

Step 2 (Method of partition). Fix such a rectangle A :¼
Qd

i¼1 ½xi; xi þ aiÞ and K ¼
1
jAj

1A; and let 0o�od=4 be arbitrary. Since Khn
� f ! f in L1ðRdÞ; then it is enough

to show that

lim sup
n!1

1

n
log sup

x2E

Pxðkf
�
n � Khn

� f k14dÞp� Iðd�Þ: (6.1)
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Note thatZ
jf �nðxÞ � Khn

� f ðxÞjdxp
Z

1

jAjhd
n

Z
xþhnA

LnðdyÞ �
1

jAjhd
n

Z
xþhnA

f ðyÞdy

�����
�����dx

p
1

jAjhd
n

Z
jLnðxþ hnAÞ � mðxþ hnAÞjdx:

Consider the partition of Rd into sets B that are d-fold products of intervals of the

form ½
ði�1Þhn

p
; ihn

p
Þ; where i 2 Z; and p 2 N� such that mini aiX

2
p
: Call the partition C:

Let A� ¼
Qd

i¼1½xi þ
1
p
;xi þ ai �

1
p
Þ: We have

Cx :¼ðxþ hnAÞn
[

B2C;B xþhnA

B  xþ hnðAnA
�Þ:

Consequently,Z
jf �nðxÞ � Khn

� f ðxÞjdx

p
1

jAjhd
n

Z X
B2C;B xþhA

jLnðBÞ � mðBÞjdxþ
1

jAjhd
n

Z
fmðCxÞ þ LnðCxÞgdx: ð6:2Þ

Using the fact that for any set C 2 B; h40 and any probability measure n on Rd ;Z
nðxþ hCÞdx ¼ jhCj ¼ hd

jCj

(by Fubini), the last term in (6.2) is bounded from above by

1

jAjhd
n

2hd
n jAnA

�j ¼
2

jAj

Yd

i¼1

ai �
Yd

i¼1

ai �
2

p

� � !

¼ 2 1�
Yd

i¼1

1�
2

pai

� � !
p�

once if p verifies

min
i

aiX
2

p
; 2 1�

Yd

i¼1

1�
2

pai

� � !
p�:

We fix such p which is independent of n.
For any finite constant R40; letting SOR :¼fx 2 Rd ; jxjpRg; we can bound the

first term at the r.h.s. of (6.2) from above byX
B2C;B\SORaf

jLnðBÞ � mðBÞj
1

jAjhd
n

Z
B xþhnA

dx

þ
1

jAjhd
n

Z
B xþhnA

dxfLnðS
c
ORÞ � mðSc

ORÞ þ 2mðSc
ORÞg:

Clearly, h�d
n

R
B xþhnA

dxpjAj; and mðSc
ORÞo�=2 for all RXR0:
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By Lemma 3.2, we have for all t40;

lim sup
n!1

1

n
log sup

x2E

PxfLnðS
c
ORÞ � mðSc

ORÞ4�g

p� JSc
OR
ð�Þp� ðt½�þ mðSc

ORÞ� � Lðt1Sc
OR
ÞÞ:

Since limR!1Lðt1Sc
OR
Þ ¼ 0 by Lemma 3.3, then for any L40; the l.h.s. above is

bounded from above by �L for all R large enough, say RXR1: Fix RXR0 _ R1

below. Summarizing those estimations we obtain

lim sup
n!1

1

n
log sup

x2E

Px

Z
jf �nðxÞ � Khn

� f ðxÞjdx4d
� �

pð�LÞ _ lim sup
n!1

1

n
log sup

x2E

Px

X
B2C;B\SORa;

jLnðBÞ � mðBÞj4d� 3�

 !
: ð6:3Þ

Step 3: It remains to control the last term in (6.3). Set

~C ¼ fB;B 2 C;B \ SORa;g [ fCg; C :¼
[

B2 ~C

B

 !c

and Bð ~CÞ ¼ sfB;B 2 ~Cg; the s-field generated by ~C: Regarding Ln and m as
probability measures on Bð ~CÞ; and denoting the total variation of Ln � m on Bð ~CÞ
by kLn � mkBð ~CÞ; we haveX

B2C;B\SORa;

jLnðBÞ � mðBÞjpkLn � mkBð ~CÞ ¼ max
V2f�1;1g

~C
ðLnðV Þ � mðV ÞÞ;

where f�1; 1g
~C denotes the set of all Bð ~CÞ-measurable functions with values in

f�1; 1g (which can be identified as the set of functions from ~C to f�1; 1g). Therefore,
for any r40 fixed,

Px

X
B2C;B\SORa;

jLnðBÞ � mðBÞj4r

 !
pPx max

V2f�1;1gBð
~CÞ

LnðV Þ � mðV Þ4r

 !

p
X

V2f�1;1gBð
~CÞ

Px LnðV Þ � mðV Þ4rð Þ:

At first by Lemma 3.2, for each V 2 f�1; 1g
~C and for all 0o�or;

sup
x2E

PxðLnðV Þ � mðV Þ4rÞpM expð�nJV1E
ðr� �ÞÞ; 8nX

4N

�
:

Secondly, the number of elements ~C is not greater than ð2Rp
hn
þ 2Þd þ 1 ¼ oðnÞ by

(1.3), then f�1; 1g
~C has 2oðnÞ elements for n large enough. Consequently letting Bð1Þ
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be the unit ball in L1ðmÞ; we have

lim sup
n!1

1

n
log sup

x2E

Px

X
B2C;B\SORa;

jLnðBÞ � mðBÞj4r

 !

p lim sup
n!1

1

n
log 2oðnÞM sup

V2Bð1Þ

exp ð�nJV ðr� �ÞÞ

¼ � inf
V2Bð1Þ

JV ðr� �Þ;

where it follows by (6.3),

lim sup
n!1

1

n
log sup

x2E

Px

Z
jf �nðxÞ � Khn

� f ðxÞjdx4d
� �

pð�LÞ _ � inf
V2Bð1Þ

JV ðd� 4�Þ

� �
:

As L; �40 are arbitrary and lim�!0þ infV2Bð1Þ JV ðd� 4�Þ ¼ Iðd�Þ by (2.8), we obtain
the desired (6.2) and then complete the proof of the upper bound in (2.3).
6.2. Proof of Part (b) in Theorem 2.3

Let Jðn=PÞ be the Donsker–Varadhan entropy of n w.r.t. the Markov kernel P

given by (1.5). We have for any 1pu 2 bBðEÞ;

Z
log

u

PNu
dn ¼

XN�1
k¼0

Z
log

Pku

PPku
dnpNJðn=PÞ:

We get thus

NJðn=PÞX sup
1pu2bBðEÞ

Z
log

u

PNu
dn ¼ Jðn=PN Þ; 8n 2 M1ðEÞ; 8NX1: (6.4)

By H1, Plðx; �ÞpMmð�Þ: Then

Jðn=PÞX
Jðn=PlÞ

l
X

1

l
sup

1pu2bBðEÞ

Z
log

u

mðuÞ
dn� log M

 !
¼

hðn=mÞ � log M

l
;

where hðn=mÞ ¼
R
log dn

dm dn if n5m and þ1 otherwise, is the relative entropy of n
w.r.t. m (the last equality is the famous variational formula of relative entropy).
Notice that in the i.i.d. case of common law m; its transition is P0f ¼ mðf Þ and
hðn=mÞ ¼ Jðn=P0Þ: Hence

I iid ðdÞ ¼ inffhðn=mÞ; kn� mkTV4dg;

where the desired inequality (2.5) follows.
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6.3. Proof of Part (c) in Theorem 2.3

This follows from Rio’s deviation inequality [19]. In fact using his inequality, we
have (see [15] for details)

Pm kf
�
n � f k1 � Emkf �n � f k14d

� �
p exp �

nd2

8ð1þ 2SfÞ
2

 !
; 8nX1; d40;

where Sf :¼
Pþ1

k¼1 fk where fk is the f-uniform mixing coefficient given in [19] or
[15]. In the actual Markov context, we have

2fkp sup
x;y2E

kPkðx; �Þ � Pkðy; �ÞkTV

and then 2SfpS; the quantity in (2.6). S is finite for aperiodic Doeblin recurrent
Markov chain. Moreover by Lemma 3.5, Emkf �n � f k1 ! 0: Thus by the lower bound
in (2.3), Rio’s estimate and the right continuity of IðdÞ; we get

�IðdÞp�
d2

8ð1þ SÞ2
;

where the desired inequality (2.6) follows.
7. Proof of Theorem 2.4

Lemma 7.1. Given V 2 bBðEÞ: If Tn is an asymptotically consistent estimator of

hV ; f i :¼
R

E
V ðxÞf ðxÞdx; i.e., for each ðP; mÞ 2 Y (satisfying H1 and dmðxÞ5dx),

jhTn;Vi � hf ;Vij ! 0 in probability Pm; then

lim inf
n!1

1

n
log PmðhTn � f ;Vi4dÞX� inffJðgÞ; hg� f ;Vi4dg: (7.1)

Proof. It is enough to prove that the l.h.s. of (7.1) is X�JðgÞ for every g 2 PðEÞ
such that hg� f ;Vi4d and JðgÞoþ1: By the Step 3 of the proof of Theorem 2.2, it
suffices to prove it for gdx ¼ n ~V where ~V 2 bBðEÞ is arbitrary. Its proof, completely
parallel to the Step 2 in the proof of Theorem 2.2, is based on the fact that ðQ

~V ; n ~V Þ 2

Y again. It is so omitted. &

Lemma 7.2. Under H1, let Ið�Þ be defined in (2.4). Then

lim
r!0þ

IðrÞ

r2
¼

1

2 supkVkp1 s2ðV Þ
¼

1

8 supA2BðEÞ s2ð1AÞ
: (7.2)

Proof. We shall only prove the first equality in (7.2) (the proof of the second is
similar). By (2.8) and Lemma 3.7(b), for any V 2 bBðEÞ with kVkp1;

lim sup
r!0

IðrÞ

r2
p lim

r!0

JV ðrþÞ

r2
¼

1

2s2ðV Þ
;

where ‘‘p’’ in the first equality of (7.2) follows.
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For the inverse inequality, let L41 be arbitrary but fixed. For any d40 small
enough, we have by Lemma 3.7,

CðLdÞ :¼ sup
t2½0;Ld�

sup
V2Bð1Þ

d3

dt3
LðtV Þ

����
����oþ1:

Thus by the Taylor formula of order 3, we get for any V 2 Bð1Þ and r 2 ð0; d�;

JV ðrÞX sup
t2½0;Lr�

ðtr� Lðt½V � mðV Þ�ÞÞ

X sup
t2½0;Lr�

tr�
t2s2ðV Þ

2

� �
�
ðLrÞ3

6
� CðLdÞ

Xr2 L ^ s�2ðV Þ �
½L ^ s�2ðV Þ�2s2ðV Þ

2

� �
�
ðLrÞ3

6
� CðLdÞ;

where the last inequality is obtained by taking t ¼ r½L ^ s�2ðV Þ�: Thus by (2.8),

lim inf
r!0þ

IðrÞ

r2
¼ lim inf

r!0þ
inf

V2Bð1Þ

JV ðrÞ

r2

Xmin inf
V2Bð1Þ: s�2ðV ÞpL

1

2s2ðV Þ
; inf

V2Bð1Þ: s�2ðV Þ4L
ðL� L=2Þ

� 	

Xmin inf
V2Bð1Þ

1

2s2ðV Þ
;

L

2

� 	
;

where the desired inverse inequality follows by letting L !þ1: &

Proof of Theorem 2.4. (a) By Lemma 7.1, since D is dense in the unit ball of L1ðRd Þ

w.r.t. sðL1;L1Þ;

lim inf
n!1

1

n
log PmðkTn � f k14rÞ

¼ lim inf
n!1

1

n
log Pm sup

V2D
hTn � f ;Vi4r

� �

X sup
V2D

lim inf
n!1

1

n
log PmðhTn � f ;Vi4rÞ

X� inf
V2D

inffJðgÞjhg� f ;Vi4rg ¼ � inf JðgÞj sup
V2D

hg� f ;Vi4
� 	

¼ � inf
g:kg�f k14r

JðgÞ ¼ �IðrÞ:

Thus (2.10) follows from Lemma 7.2. The second claim follows easily from (2.10)
by means of the extra condition on Tn and H1 (as in Step 1 of the proof of
Theorem 2.2).

(b) It follows from Theorem 2.3 and Lemma 7.2. &
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