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Abstract

In this paper, we consider a uniformly ergodic Markov process (X,),, valued in a
measurable subset E of R? with the unique invariant measure p(dx) = f(x)dx, where the
density f is unknown. We establish the large deviation estimations for the nonparametric
kernel density estimator f7 in L'(RY,dx) and for W=7 LVRY dy) and the asymptotic
optimality /7 in the Bahadur sense. These generalize the known results in the i.i.d. case.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let {X,;n>0} be a Doeblin recurrent Markov chain valued in a Borel measurable
subset E of R?, defined on the probability space (€, (ZF pen> Z s (Px)ver), With
(unknown) transition kernel P(x,dy). Moreover, we assume that the unique
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invariant measure u of P is absolutely continuous, i.e., u(dx) = f(x)dx where the
density fis unknown.
Let K be a measurable function such that

K>0, / K(x)dx = 1 (1.1)
Rd

and set K;(x) = -5 K (¥). Given the observed sample {X, ..., X,_}, we consider the

g h’ . : .
empirical measure L,= % 27:01 Ox, and define the kernel density estimator of the

unknown f as usually as

. 1201 /x—X;
fn<x>=1<h,l*dLn<x>=;;h—dK( - ) xe R, (1.2)

where {£,,n>0} is a sequence of positive numbers (bandwidth) satisfying
h, — 0, nhZ — 400 asn— oo. (1.3)

A natural measure of closeness of f* to the unknown f'is its L'(R?) = L'(R?, dx)
distance below,

D, = /d [5() =/ ()l dx. (1.4)
R

The limit behavior of /7, in L'(R?) is a subject of current study.

In the ii.d. case, Devroye [6] proved that all types of L'(R?)-consistency are
equivalent to condition (1.3) on the bandwidth (/,). Csorgé and Horvath [3] and
Horvath [11] investigated the asymptotic normality of D;. Louani [16] established
the large deviation principle (LDP in short) of D). Gao [8] obtained the LDP and the
moderate deviation principle of f* in L(R?). And recently Lei et al. [14] prove the
weak LDP of /7 in L'(R%), and show that the corresponding LDP is false. More
recently Gao [9] obtains the moderate deviation principle of /7 in L'(RY) and the law
of the iterated logarithm for D;. Giné et al. [10] establish a functional central limit
theorem and a Glivenko—Cantelli theorem.

How to extend those results from the i.i.d. case to Markov processes (or dependent
case) is a very natural and important question. In fact, numerous practical
models from economic time series or biologies are Markov process (cf. [2]), for
which it is very important to estimate the asymptotic equilibrium measure
w(dx) = f(x)dx. Known works in the dependent case are concentrated on the
consistency of /7 and its asymptotic normality, see Peligrad [18], Bosq et al. [1] and
the references therein. But few are known about the large deviations of /7 and D} in
the dependent case.

In a recent work [15], as a first step towards the large deviations of /7, we prove the
exponential convergence of f; to f for a ¢-mixing sequence (X,). In this paper which
is a sequel to [15], we investigate the large deviations of £ in L'(RY) and of Dy in the
framework of uniformly ergodic Markov chains (see H1 below).

Large deviation of occupation measures L, for Markov processes is a traditional
subject in probability, initiated by Donsker and Varadhan [7]. The rate function is
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the Donsker—Varadhan level-2 entropy given by

J(v) = sup{/ log % dv; I<ue b,%(E)}, Vv e M (E), (1.5)

where bZ(E) is the space of real bounded functions measurable w.r.t. the Borel o-
field #(E) of E, and M (E) denotes the space of all probability measures on E.

Deuschel and Stroock [5, Theorem 4.1.14] obtained the LDP of L, w.r.t. the -
topology (i.e., the weakest topology on M (E) such that v — v(f):= [ f(x)dv(x) is
continuous for all f* € b#(FE)), under the following:

H1 (Uniform ergodicity). There are 1</<N € N and M >1 such that

P(y,A)+---+ PY(y,4)

Px, )M ,
(x,4) v

Vx,y € E,A € B(E).

Later, a lot of significant progress has been made, see [4,23,13] and the references
therein.

This paper is organized as follows. The main results such as the weak*-LDP of /7,
on L'(RY), the large deviation estimation for P.(D;>0) and the asymptotic
efficiency of the estimator /7 in the Bahadur sense, etc. are presented in the next
section. Those results are, as far as we know, obtained for the first time in the
dependent case. In Section 3, we prepare several lemmas. We give the proofs of the
main results in Sections 4-7.

2. Main results

Throughout this paper, we adopt the following notations. L7(R?):= LP(R¢, dx),
LP(p)=LP(E, s If Iy = Wl o1 e_ax)- We denote by b% (resp bA(E)) the space of all
real bounded and Borel #-measurable functlons on RY (resp. E) equipped with the
sup norm | V|| = sup, |V(x)|. We write W(V) = (V), = | £ V(x)dv(x). Without loss
of generality, we assume that (X ), is the system of coordinates on Q= EN and P,
is the law of the Markov chain with the transition kernel P and the starting point
x € E. Set P,(-)= [ Pc()dv(x) and E'(-) = [,-dP,. Let (6w), :=w,41 (n € N) be
the shift on Q.

When the bandwidth /, — 0, £, dx is “close” to L, in the t-topology, so we may
hope that /7, dx satisfies the same LDP as L,. This intuition is true:

Theorem 2.1. Assume H1 and h, — 0 (without (1.3)). Then P(f} € ) satisfies,
uniformly for the initial points x € E, the LDP in L'(R?) w.r.t. the weak topology
o(L', L®), with the rate function given by

() :={J(ng) if g€ 2(E),

+oo if g € L'(RY\2(E). @D
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Here J(-) is the Donsker—Varadhan level-2 entropy given in (1.5), P(E) is the set of all
probability density functions on R? with support in E, i.e., those g € L'(RY) such that
g=00onRY g=0, ae. on EC=RI\E and Jpe gdx = 1.
More precisely, J is inf-compact on (L'(R?),a(L', L)), and for any measurable
subset A of L'(RY),
— inf J(g9)< lim inf l log inf P.(f7 € A)
n—oo N xek

geAd”

. 1 .

< lim sup — log sup P.(f7 € 4)< — inf J(g),
n—oo N xeE ged’

where A°°,A° denote, respectively, the interior and the closure of A w.r.t. the weak

topology o(L', L®).

The LDP w.r.t. the weak topology on L'(R?) above is of the same type as the
classical results for L, w.r.t. the t-topology. But it is too weak in the sense that it
does not entail the consistency, i.e., D; — 0 in probability. For statistical issues, the
main objects to be studied are

@) P — gll; <o) where g € Z(E) is fixed, which is important in the hypothesis
testing: Hy : du(x) = f(x)dx against H| : du(x) = g(x)dx; or
(i) Py(D} > 9), whose statistical importance is obvious.

Unfortunately Theorem 2.1 cannot be applied for them, since {§ € L' (RYY; 1 — gl
<4} is not open in o(L',L®) and {§e L'(RY); ||§ — fIl; =0} is not closed in
o(L', L®). They are objects of

Theorem 2.2. Assume H1 and (1.3). Then P.(f), € -) satisfies, uniformly for initial
state x € E, the weak*-LDP on (L'(RY), || - ||,) with the rate function J(g) given by
(2.1), i.e., for any g € L'(RY),

1
lim lim inf ~log inf P(If; — gl <0)
xeRe

0—>0 n—oo n

= lim lim sup % log sup P.(Ilf5 — gll; <9) = —J(g). (2.2)

=0 p-o00 xeR?
Notice that the corresponding (good) LDP is in general not true, because even in
the i.i.d. case, J(g) = J™(g) = [ g(x)log 99 (for g € Z(F) and gdx<f dx) is not

Sx)
inf-compact on (L'(R%), | - [I;) (as noted in [14]).

Theorem 2.3. Assume H1 and (1.3). Then
(a) For any 6>0,

—I1(0)< lim inf ! log inf P.(|f —fIl;>0)
n—oo n yeR?

1
< lim sup — log sup P(|lf5, = fl1>d)< — 1(6-), (23)

n—00 xeR?
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where
1(0) = inf{J(9); g € 2(E), g —fl,>0}. (2.4)

(b) We have for any 6 >0,
16)> 7 (I"(3) ~log M) 3)

where 1, M are given in H1 and I"™(5) is the rate function of the LDP of W — £l
in the case where (X,) are i.i.d. of common law u (see (2.9) below).
(c) Besides H1, assume that P is aperiodic. Then we also have

2
8(1+8)*’

where S=3 72, SUPy ek IP5Cx, ) — PE(y, )ity (here || - |lpy denotes the total
variation) is finite.

1(0)> V>0, (2.6)

Remark 2.1. Parts (b) and (c) of Theorem 2.3 are served for é large or small,
respectively. By the contraction principle and the LDP of L, under H1 in [5,
Theorem 4.1.14], for each V € b#A(E), L, (V) — u(V) satisfies the LDP with the inf-
compact rate function given by

Jy(r) =inf{J(v); v(V)=u(V)+r}, VreR. (2.7)

Since Jy(0)=0 and Jyp is convex with values in [0,40c0], Jy is non-
decreasing and left continuous on [0,+00). Consequently using ||v — ullty =
supy <1 [V(V) — w(V)] = 2sup 44 [V(A) — u(A4)| (for two probability measures
1, v), we can identify 7(J) given in (2.4) as

1(9) = inf{J()| Sup, (V) = u(V)]1> 9}

— inf inf Jy(r) = inf Jyp(5+)
i<t

<1 r>é

inf{J(v)| su [(v(A)—,u(A)]>5/2}= inf  J4(3/2+), (2.8)
(E) AeH(E)

AR

where J4 = J,. In the i.i.d. case, the last expression in (2.8) above coincides exactly
with the rate function of the LDP for D; found by Louani [16]. Indeed, when
w(A4) = a € (0,1), then for any >0, J’/’id(é/2) is given by

) = { (a-+9)Tog(1 +4) + (1= a=Ylog(1 — 5i%5) if 0<6<2 20,
+o0, otherwise
(then Ji(8/2) = J4(5/2+)) and
[():= inf I'*(3)=inf J4(5/2) (2.9)
as(0,1) A

which is 7 in [16].
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Remark 2.2. If I were strict increasing on (0, a) where a := sup{r>0; I(r) <+oo}, then
we can prove in fact the LDP of D* in R* with the rate function 6 — I(d—), from
(2.3).

In the results above, we have the large deviation estimates of the estimator f7,
useful in statistics. We now show that /7 is asymptotically optimal in the Bahadur
sense. Let ©® be the set of unknown data (P,u) verifying H1 and u(dx)<dx.
Given a subset Z of the unit ball in 4, we say that an estimator 7,,(-) .= T,(-; Xo, ...,
X,_1) € L'(RY) is an asymptotically ¢(L', Z)-consistent estimator of the density f;
if VIV e 9,

/ T,(x)V(x)dx — / S V(x)dx
Rd Rd
in probability measure PP,. From the results above, we shall derive:

Theorem 2.4. Given (P,u) € O, let (X,),(Px).cp) be the associated Markov process.

(a) (Bahadur type lower bound). Assume that & is dense in the unit ball of L®°(R?)
w.r.t. the weak® topology o(L®,L"). Then for any o(L', 2)-asymptotically
consistent estimator T, of the density f,

N T
hrnl(}ilf = lim inf p log P,(I T — f1ly>7)
1 1

2 - = - s
2supyy <1 0X(V) 8sup 4ey 02(14)

(2.10)

where
G (V)=Var (V) +2> (V= u(V), PV),.
k=1

If moreover | T, — T, 0 0|, <3, — 0, then (2.10) still holds with P, substituted
by inf,cg P,.
(b) (Asymptotic efficiency of /7, in the Bahadur sense). If &, verifies (1.3), then

N | . "
lim inf — lim - log 1YI€1£ P =Sl >r)

r—0+ 74 n—oo

. 1.1 X
= lim sup — lim — log sup P.(||f}, —fl,>r)
r—>04 7 n—=oon xeE

1 1

C2supp <1 02(V)  8sup ey ai(ly)

@.11)

Thus f7, is an asymptotically efficient estimator of f in the Bahadur sense. And
1/6*(V) can be interpreted as the Fisher information at the direction V of our
statistical model ©.

All the results above except perhaps Theorem 2.4(a) are, as far as we know, new in
the dependent case.
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Remark 2.3. In comparison with the i.i.d. case, the new object in the Markov chain
case is the transition kernel density p(x, y) := P(x,dy)/dy. For its estimation or more
precisely F(x,y) =f(x)p(x,y), no more effort is required due to the subtleness of our
assumption H1. Indeed, consider the Markov chain Y, =(X,, X,,4) with values in
E?, whose transition kernel still verifies H1 and whose unique invariant measure is
F(x,y)dxdy. The Donsker—Varadhan level-2 entropy for this new Markov chain
possesses an explicit expression [5]:

JO(0) = { J f g Qdx,dy)log S48 if Q € M(E?), O(x,) <P(x;"),
+

otherwise,
(2.12)

where Q € M3(E?) iff Q € M{(E*) and Q(A4 x E) = Q(E x A), VA € B(E), and
QO(x,dy) is the regular conditional distribution of the second coordinate X; knowing
the first Xy = x. Consider the kernel density estimator

n—1

" 1
Frtey)== > Ki(x = Xi) - Ki, (v = Xien).
k=0

Hence the previous results apply for F, if condition (1.3) is substituted by /4, — 0
and nh*? — +oo.

3. Several lemmas

For every V e bA(E), put P"(x,dy)=e"®P(x,dy). We have the Feynman-Kac
formula

n—1
(PYY'f(x) = Ef(X,)exp > V(Xp).

k=0

Let [[(PY)"l =supyy<; I(PY)'f1 = I(PY)"1]| be the norm of P” acting on bZA(E).
Consider the uniform Cramer functional [5]

1 1 L
A(V) = lim = log ||[(P)"|| = lim = log sup E* exp V(Xy) |,
n—o00 N n—oo N xeE =
then e(¥) is the spectral radius of P” on b#(E). It is well known [5] that
J(v) =sup{v(V) — A(V);, V € bB(E)}, VYve M(E). 3.1

By the LDP of L, in [5] and the Laplace principle due to Varadhan, VV € b%4(E),

A(V) = sup{v(V) = J(v); v e My(E)} = sup{/ gVdu—J(g); g € —@(E)},

(3.2)

where the second equality follows from the fact that if J(v) <400, then v<u under
HI (see [23, B.23]).
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By H1, P'(x,dy)< Mu(dy). Hence for each V € bA(E),

1 n—1
A(V) = lim —log E" exp (Z V(Xk)>. (3.3)
n— o0 —o

Lemma 3.1. For positive operator PV defined as above, let (PV)* be the dual operator
of PV w.r.t. u. Then
(a) There exist ¢ € bB(E), Y € bAB(E) both strictly positive, such that
P ¢ =" over E, (PVYy ="y, p-as.
and the following Harnack inequalities hold.

N
% v % < % LNV LQIA(C;A - <MV vxye E. (34)
(b) Put
0" (x.dy) = S P

then Q" is Doeblin recurrent, and vy = ¢\ is the unique invariant probability
measure for Q"

Proof. (a) Under HI, P'(x,dy)< Mu(dy) and then P"(x,dy)< Mu(dy). Thus (P")Y
is uniformly integrable in L*°(u) in the terms of [23]. By Theorem 3.2 in [23], there
exists some 0< ¢ € L*(u) such that u(¢)>0 and

PYWo=r"o, pas,

where r is the spectral radius of P” in L>®(u). Since (P”)V (x, dy)<eMVI M u(dy), then
letting g := (P")" ¢, we see that (P")¥g = rVg everywhere over E. By (3.3), r = eV,
Finally setting

N
$(x) =Y (P")g(x),
k=1

which is strictly positive by H1, we have for all x € E,
P p(x) = rg(x) = e'Mp(x), VxeE.

Since for any x, y,

o) _ @) e
¢ L (P p M
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using H1 and — | V|| < V(x)<|| V]|, we get

P0) M an S
(/)(x) =N elAV)

where the desired Harnack inequality (3.4) for ¢ follows.

For the corresponding result about (P")*, we choose a kernel P*(x,dy), which is
the dual of P (w.r.t. ) and also satisfies H1. Applying the previous argument to
e”® P*(x,dy) which is the dual of P” (w.r.t. u), we get the existence of ¥ and the
Harnack inequality (3.4) for .

(b) It is easy to verify that Q" is a Markov kernel, and ¢y is an invariant measure
of 0V. As Q" again satisfies HI by part (a), it is Doeblin recurrent. Then ¢y is the
unique invariant measure of Q. [

Lemma 3.2. Under H1, we have for every V € b#B(E) such that |V|<1,Vr>0, n>1
so that 4N /n<r,

<1 2l > 4N
sup P, | - Z VIXi)>uV)y+r | <M exp(—nJV(r——>), (3.5
n n

ek k=0

where J (1) is the rate function governing the LDP of L,(V)— w(V), given in (2.7).

Notice that in the i.i.d. case, M = N =1 and (3.5) is exactly the well-known
Cramer inequality. This lemma is basic to Theorem 2.3.

Proof (following closely [5]). (1) At first by Deuschel and Stroock [5, Lemma 4.1.4],

' 1 n—1
Py(r) = inf Py (Z kz:; V(Xi)>uV) + r)

is super-multiplicative, i.e., p,,,,=p,p,,, Ya,m € N*. Thus

1 1 1

m=1 m m—00 m

But by the uniform LDP of L,(V) =1 ZZ;(I) V(Xi) in [5] and the increasingness of

n

Jy on R, we have lim,,_ o 2 L w0 < Jy(r) for every r=0. Thus

n—1

1 .
inf P, |- § V(X )>u(V)+r | <e™0) Ya>1,r>0. (3.6)
xeE n =0

(2) Forevery k= 1,..., N, since

IL/(V) o 0 — L(V)|< % < %N
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letting ¢ = 2Y we have for any r € R, n>1 and x € E,

n°

Fur () =P L(V)> (V) + 1S PoLy(V) 0 0° > (V) + 1 — ¢)
= (Pkfn,r—s)(x)

and similarly
Sur®)ZPALy(V) 0 05> (V) + 1 + &) = (Pf,,,, ().

Thus using H1, we obtain for any x,y € E,

1 N
Sar QS PL o JOOSM 52> (P JO)VSMS 0, (0):
k=1

Hence the desired result follows by (3.6). [

The following result is technically crucial for all results in this paper.

Lemma 3.3. (a) A(V) is Gateaux-differentiable on bA(E).
(b) If V,y, = V in measure u and sup,, |V, || <C, then A(V,) — A(V).

Proof. (a) Under HI, (P")" is uniformly integrable in L*(u), then by [23,
Proposition 2.1], (PV)*" is compact in L>(x) . Consequently by the perturbation
theory of linear operators [12, Chapter VII, Theorem 1.8], the largest
eigenvalue e2¥4(") of (PV)*V| is real-analytic, i.e., A(V + ¢V) is analytic on r € R
for any V,V € b# fixed.

(b) At first lim inf,_ o A(V,)=A(V) by (3.2). Notice that e¥(") is the spectral
radius of (P)Y in L>®(u). Now the inverse inequality lim sup, . A(V,)<A(V),
follows by [23, Proposition 3.8] applied to m,:=(P")". O

Lemma 3.4 (Gibbs type principle). Given a function V € b#A(E), a probability measure
v on E satisfies

JO) =, V)= AW)

iff v=vy=oyu, where ¢ (resp. ) is the right (resp. left) eigenfunction of P"
associated with e'V) given in Lemma 3.1(a) verifying u(¢py) = 1.

Proof. Recall at first that
J(v) = inf{J®(Q); 0 e M}(E?), (4 x E) = v(A), VA € B(E)}, (3.7)

where J@(Q) is given in (2.12) (cf. [7,5]).
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“e=" Let @"(dx,dy) = vy(dx)0" (x,dy). By definition (2.12), we have

4
QrnVy _ r@” 0 (x,dy)_ Q’ o) R 4E)
JOAQ)=E logiP(x,dy) =[E- log TG e
V()
- /log%de(x)z(V,vy)—A(V). (3.8)

By (3.7), Jvp)<(V,vp) — A(V) and the equality holds by (3.1).
“=="" It is well known from the convex analysis that

JO) = (v, V) — A(V) <= v € dAV), (3.9)

where 0A(V') denotes the set of sub-differentials of A(-) at ¥ (which is contained in
the topological dual space (b#(E))' to which M/(E) is embedded). Since vy € 6A(V)
(by the sufficiency above) and A(V) is Gateaux-differentiable on 5% by Lemma 3.3,
oA(V) is the singleton {vy}. [

The following lemma is a main result in [15], which will be crucial in the proof of
the lower bound in Theorem 2.2.

Lemma 3.5 (Lei and Wu [15, Theorem 2.1]). Given a stationary sequence (X;);cn
valued in E such that p(dx) = P(X; € dx) =f(x)dx. Let (¢;);>, be the ¢p-mixing
coefficient of (Xi);en. Assume (1.3) and

Sp=Y_ ¢ < +o0. (3.10)
k=1

Let Dj; be given by (1.2). Then D — 0 exponentially as n — oo, ie.,

lim sup ! log P(D};>0)<0, V5>0.
n

n—oo

Corollary 3.6. If P is a Doeblin recurrent [17] Markov kernel on E with the unique
invariant probability measure du(x) = f(x)dx, then

lim sup ! log Pu(D;>0)<0, Vé>0.

n—oo N

Proof. If P is moreover aperiodic, then Sy <+oo (well known, see the proof of
Theorem 2.3(c) in Section 6) and this corollary follows directly from Lemma 3.5. Now
assume that P is of period d > 1. By the classical theory of Markov chains in [17], we
have the following cyclic decomposition: £ = AU E| U --- U E; where u(./") = 0 and

(i) N, Ey,..., E, are disjoint;
(ii) P(x,Eir1) =1, Vx € E; (here Eqy1 = E));
(iii) there are C>0 and r € (0, 1) such that

sup [|[P(x,-) — wllry<Cr", Vn=0,i=1,....d,

xekE;
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where f; = f1g,d and p; = dlg,u = f;dx. Let

n—

Sa(x)= 1 Z K, (x — X ar).

Since P/ £, 1s Doeblin recurrent and aperiodic on E; by property (iii) above, we have
by Lemma 3.5,

1
lim sup — logP#(ufdoQ’ =il >0)<0, V6>0

n—oo

forallz]_l .,d where i + j =i+ j(mod d). Asfnd(x)_dz, S do@’andf—
dz/ 1S i then we get forany 0>0andi=1,...,d

lim sup _d log Py, (If 5 = f 111 >6)

n—oQ

<lim sup — log Z Pu(lfig o0 = £yl >8)<0,

n—0oo
where the desired result follows. [

Lemma 3.7. Under H1, we have:
(a) for any k=1, there exists some >0 such that

k

sup  sup |-

ll<o Vi<l

A(V)| < + o0

and for every V e bB(E), A" (tV)|,—o = c*(V);
(b) the rate function Jy given in (2.7) satisfies

sup,eg ((r + W(V)] = A@V)), VreR,
Jy(r) = {

sup, s o ({(r + p(V)] — A(tV)), ¥r=0 (3.11)

and Jy is strictly convex on [JV<+oo]0 = (a,b) where a = lim,_, _ %A(Z V) —
w(V) and b = lim,_, ;o %A(ZV) — w(V) (in particular Jy is strictly increasing and
continuous in [0, b)); moreover

Jy(r) 1
=0+ 12 20%(V)

€ (0, +o0].

Proof. (a) We shall follow the approach in [21], in which it is assumed that 1 is
the unique isolated eigenvalue z € C of P in b%(E) such that |z| = 1. Under H1, the
last assumption is satisfied if P is aperiodic. Let us see how to bypass this
assumption.

Under HI, recall the cyclic decomposition E = /(/'UUleE,- in the proof of
Corollary 3.6 above. Let us consider P g, which is Doeblin recurrent on Ej,
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aperiodic, with the unique invariant probability measure y;. Hence 1 is the unique
isolated eigenvalue z € C of PdlE[ in bA(E;) such that |z| = 1.
For each V' € b#(E), consider the following operator acting on h%(E1):

RVF(x) = Ef (X ppedin "0 = (PYY|, f(x), ¥x € B,

It is obvious that the spectral radius rsp(RV) of RV in b#A(E,) is not greater than
rep((P)?) = e4), On the other hand, by the LDP in [5] for any initial measure and
the fact that (PV)dIErl' =0 on E;, we have

log ry(R")> Tim  log [P 1]

1
= lim —log i [(P")"1]
=dA(V).

Thus ryp(R”) = 1),

As in [21], we will apply the analytical perturbation theory of Kato [12]. For each
z € C, consider R*" acting on the complexified space bc Z(E;), which is analytical in z
in the sense of [12]. Then for any 5 € (0, 1/2) sufficiently small, there exists 6 >0 and
C >0 such that for all V' € b#(E) with |V] <1,

(1) the eigenvalue Jpma(RZ") of RZY with the largest modulus is isolated in the
spectrum of R” and |Ana(R7") — 1| <y for |z <20;

(2) for all |z] <26, the eigenprojection E(z, V) of RZV associated with Anax(R") is
unidimensional and

IEG, V)lk, = g ll<1/2, [(RYY'(I = EG V)I<C1 =2, Vn;

(3) z = Amax(RZ") and z — E(z, V)f is analytic in z for |z|<20;

where properties (1) and (2) follow by [12, Chapter IV, Theorem 3.16] and property
(3) by [12, Chapter VII, Theorem 1.8].

Then A(zV) =1 log Ana(RZY) is analytic for |z|<26 and coincides with A(¢V)
when z =t € [-24,20] C R.

Let A,(zV) = - log E exp(X 5 2V (X)) = Llog(1,(RV)'1),,. By the proper-
ties (1) and (2) above, we have

(1L, (RY'1),,, = "Y1 E(z, 1), + O((1 — 2n)""),

where it follows that A,(zV) — A(zV) uniformly over z: |z|<20 and V : ||[V| < 1.
Thus by Cauchy’s theorem and property (3) above,

k

d
sup sup |5 A(zV)|<+o0,
i<t |z1<o |dz
dk dx
sup sup |— A,(zV) —— A(zV)| — 0.
wu‘il \z\<p6 dzk En dzk V)
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Applying the above estimate to k = 2 and notice that E* ZZ:I V(X)) =du(V),

1 nd—1 nd—1 2
AtV )img = — B (Z COBEDY V(Xk)>
n k=0 =0
d—1 0 d—1 d—1
— Varp, <Z V(Xk)> +2Y Covp, (Z V(X)) V(X,1d+k)).
k=0 n=1 k=0 k=0

From the cyclic decomposition, we see that the last quantity above is exactly o2(V).
Thus A”(tV)|,—¢ = a*(V).

(b) By the LDP of L, in [5] and the Laplace principle due to Varadhan, we have
for all 7 € R,

AV — w(V)D = sup{v(@V) — (V) = J(v); v € M(E)} = sup {tr = Jy(n)},

Hence the Legendre—Fenchel theorem gives us

Jy(r) = sup {tr — AV — w(V)} = sup {t(r + p(V)] — A(tV)}, VreR
teR teR

for AV — uw(V)]) = A@V) — ti(V). When r>=0, since % A(V)| =g = n(V), the
supremum above can be taken only for />0. Then (3.11) is proved.

All other properties of Jy(r) = sup,cr (tr — AV — u(V)])) are easy consequences
of the elementary convex analysis. [

Lemma 3.8 (Bishop—Phelps, cf. [20] or [22]). Assume A is a convex real function on
a Banach space Y. Assume x, € Y’ (the topological dual space) satisfies:

dceR: Ap)=(x0,¥) —c, VyeY
then Vy € Y ,Ve>0,3y € Y,x' € 0A()), such that
/ 1 E3
X" = xoll <&, Iy = yII < - (A() — (x0,») + A7(x0)),
where A*(x):= sup{{x,y) — A(y) |y € Y}), Vx € Y, is the Legendre transformation
of A(y).

4. Proof of Theorem 2.1

The desired LDP of /7 in (L'(R?), 6(L', L)) is equivalent to the LDP of f*(x)dx
on M (RY) w.rt. the t-topology o(M(R?),b%). Since A(V1g) is Gateaux-
differentiable on b# by Lemma 3.3(a), by the abstract Gartner—Ellis theorem [22,
p- 290, Theorem 2.7], it is enough to show that for each V € b4,

lim inf - log inf E¥ exp <n / [0V (©») dy>
xeE RY

n—oo n

n— o0

1
= lim sup . log sug E* exp (n/RIf;(y)V(y)dy> = A(V1g) 4.1)
X€ .
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and A(V1g) is monotonely continuous at 0, i.e., if (V) is a sequence in bH
decreasing pointwise to 0 over R?, then A(V,1z) — 0.

The last condition is satisfied by Lemma 3.3(b). It remains to verify (4.1). Put
V= (Kp, * V)1g, then ||V, | <[IV] and,

n—1
n [ S0y =Y Vi,
R? k=0

Consequently letting ¢, be the right eigenfunction of P" associated with e, and
C:=MeNWI | we have by Lemma 3.1(a) that for each x € E,

n—1
E* exp (n /R LVG) dy> < CE" % exp (Z V(X k)>
n k=0

(P"")',,(x) A(V)

=C————= Ce"'"n
b,(x)

and similarly

_ 1 ; -l 1
E*exp (n /R L0V ) dy) e E (Z’;(é )) exp (Z V(X k)) =c eV,
n k=0

Noting that V', - Vg, dx-a.e., we have A(V,) — A(V1g) by Lemma 3.3(b). Thus
the two estimations above yield the desired relation (4.1).

5. Proof of Theorem 2.2

Part 1 (Large deviation upper bound). This is an easy consequence of Theorem 2.1.
In fact, for any g € L'(R?) and 6 fixed, as {j € L'(RY); 1§ — gll, <0} is closed in the
weak topology o(L', L*°), then by Theorem 2.1,

1
lim sup —log sup P.(lf, =gl gy <)< — _inf _ J(g).

n—>00 reRY F1g—gl <o

Letting 6 — 0, we get the desired result by the lower semi-continuity of J (which
follows from (3.1)).
Part 2 (Large deviation lower bound). 1t is enough to prove that for any g € 2,

lim inf ! log ing P(lf; — gl <0)= — J(g), Vo>0.
o0 n Xe

Its proof, more difficult, is divided into three steps.
Step 1: We claim that it is enough to show that for any g € 2 and 6 >0,

lim inf % log P.(If5; —glli<d)= —J(g9), p-as.xeA (5.1)

for some A € #(F) charged by u. Indeed, if (5.1) is true, then by Egorov’s lemma,
there is some measurable U C A with u(U)>0 such that

1
lim inf ~ log inf Py(If, — gl <0)= — J(9).
n—00 xe



290 L. Lei, L. Wu / Stochastic Processes and their Applications 115 (2005) 275-298

Let ty:=inf{n>1; X, € U} be the first hitting time to U. By HI, we have
%Zszl PH(x, ) =47u(-), then

N
Yoot Lu(Xk) > wU) -0
N M

inf P(ty<N)> inf E¥
inf Px(tu<N)> Inf
Since

1 k+n—1 1 _X.
k i
Suol: n Z th< Dy )

i=k

we have ||f — f7 00,1l < <2N on [ty < NJ. Thus by the strong Markov property, we
have for n> N such that 2N/n<5/2

. " . . o
}Crellf; P.(lf;, — gl <d)= )lcrellf; Px(TU<N)'y12[f] Py(”f;; —glhi < 2);

where the desired uniform lower bound follows from (5.1).

Step 2: For “gdx = v case. The idea of this step is to use change of measure.
Given V € b4, let Q" be the transition kernel defined in Lemma 3.1 and vy = ¢yrpu.
From Lemma 3.1, we know that Q" is Doeblin recurrent.

Let @wo be the law of the Markov process with transition kernel Q" and
the 1n1t1al point ®(0), which is vy-a.s. well-defined on Q= EV, and Q"=
Ik @w(o) dvy(w(0)). Denoting by &(w) the density of @w o) W.I.t. P on o(Xy), we
have for p-a.s. w(0),

dQ, g (dwy, ..., do,)
dlpw(O)

n—1
= exp (Z log 5(9%))
k=0

and E2° log ¢ = J(Z)(@VL/;I) = J(vy) by Lemma 3.4. For any ¢>0, putting

~
Ty

1 n—1
Wo=l{o: Ify(®) =gl <8}, Dy,= {w =) log &(0Fw)<JI(vi) + e},
n n=0

we have for p-a.s. w(0),

[pw(())( Wn) = / eXp < Z log é(ekw)> d@w(o)
W

> exp[—n(J(vy) + &)] - Q) (W N Dyy). (5.2)

So to get (5.1), it remains to show that @Z(O)(Dn,g) — 1 and @Z(O)(W,,) — 1 for p-a.s.
w(0), as n goes to infinity (for any £>0).
By the ergodic theorem and the Fubini theorem, we have for vy ~ p-a.s. w(0),

1l y
- Z log &(0kw) — EY log & = J(vp), Qpa.s..

where follows @U)(O)(D,“) — 1. For the second limit, applying the cru01a1 Corollary
3.6 to ((X,), Q") (where the condition is satisfied because ((X,),@") is Doeblin
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recurrent by Lemma 3.1), we have
Q" (W¢) — 0 exponentially rapidly.
Then by the Borel-Cantelli lemma,
Q"(we¢, infinitely often) = 0.

By Fubini’s theorem, @Z(O)(W;, infinitely often) = 0, for vy ~ u-a.s. w(0).
Step 3: The general case. By Steps 1 and 2, it remains to show:

Claim. Vv = gdx € M (R?) satisfies J(g)< +o0, there exists a sequence of (v,) =
(v,), such that ||vy, — v|ltv = 0 and lim sup,_, . J(vy,) <J(v).

Let us construct this sequence by means of Bishop—Phelps theorem (Lemma 3.8).
For any n>1, we choose I7n~e bA(E) such that J(v)< (v, V,,) — A(V,) +1(by 3.1)).
By Lemma 3.8, for each V, and ¢, = m, we can find V, € bAB(E), vy, €
0A(V,) (which is a singleton {vy,} by the proof of Lemma 3.4), such that

N 1 . N
vy, = vitv<én | Vi=Vull < 8_ AV ) = v, V) +J(O)).
So
. - 2
v, = v V) <lve, =vltv - 1Va = Vall + vy, = vlipy - IVall < .
As oA(V,) = {vy,}, we have,
2
J(VVn) = <VV,,y Vn> - A(Vn) = <VV,, -V Vn) + <V, Vn) - A(Vn)< Z + J(V)

This proves the claim. The proof of the theorem is completed.

6. Proof of Theorem 2.3
6.1. Proof of part (a) in Theorem 2.3

Its proof is divided into two parts.

Part 1 (Lower bound in (2.3)). The lower bound is an easy consequence of Theorem
2.1. Actually, as {g € L'(RY); |lg — f1l; >} is open in the weak topology a(L', L),
we have by Theorem 2.1,

lim inf ~ log inf Py — 1, >8)> — inf  J(g) = —I(5).
n—oo n xeE g: lg=f1 >0

Part 2 (Upper bound in (2.3)). The proof of the upper bound is much more difficult,
and it is divided into three steps, where the first two steps are similar to [6] and the
third one is inspired by [16].
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Step 1 (Approximation of K). The purpose of this step is to show that we can

reduce to the case where K = ﬁlA, A= H;j:] [xi, x; + a;) is a rectangle (here |A]

denotes the Lebesgue measure of 4 € 4).

Given £>0, we can find finite positive constants ¢, m, by,...,b, and disjoint
finite rectangles Ai,...,A4,, in R? of form H?:l [xi, x; + a;) such that the
function

K9(x) = Zm: bil 4,(x)
=

satisfies [ K@(x)dx = 1, K¥<qg and [ |K(x) — K®|dx<e. Define

n—1
O g9 qr, = 1 Z iK(g) x— Xk
n — T, n — n hd h .
k=0 "*n n

Then

[ i -sorenars [ ko (*22) -k (52)

- / IK* — K|(z)dz<e.
[Rtl

L,(dy)dx

Thus by the approximation lemma in large deviations [4] (more precisely, by the
same cycle of idea), it is enough to prove that f ;")’* satisfies the upper bound in (2.3).

Let K =ﬁ1A/, then K =37" 7K/ where > % =1 and J;>0. Conse-
quently,

lim sup ! log suIE) P(lf D = £, >0)
€

n—oo N X

1 i i
< lim sup . log Z sug Po(IK7, * dL, = f1l;>9)
=1 xe

n—oo

1 ‘
= max lim sup — log sup P(||K), * dL, —f|;>J).
Isjsm psoo N xeE "

Thus for the upper bound in (2.3), we may (and will) assume that K = ﬁ 14 where
A = H;lzl [x,-,x,- + ai).

Step 2 (Method of partition). Fix such a rectangle 4 = Hf’:] [xi,x; +a;) and K =
o 14, and let 0<¢<3/4 be arbitrary. Since Kj, * f — f in L'(RY), then it is enough
to show that

1
lim sup . log sug P — Kp, 1l >0)< — I(6—-). (6.1)
Xe

n—oo
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Note that

/ [f(x) — Kp, * f(x)] dx < /

il
- L,(dy) — )dy|dx
|AB? i, a Y |A|hn x+hy A Jdy

Consider the partition of R? into sets B that are d-fold products of intervals of the
form [(’ Dhy ”’") where i€ Z,and p € N* such that min; a; >3 2 Call the partition ¥.
Let A* = Hl ([ + ,Xi+a; — —) We have
Co=(tmA\ () BSx+h(4\4).

Be¥,BCx+h, A

Consequently,
[ 1500 K s st
< / S LB — u(B)|dx T / {U(C) + Ly(C)} dx. (6.2)
Al s

BeW,BCx+hA

Using the fact that for any set C € %, h>0 and any probability measure v on R?,
/ v(x 4+ hC)dx = |hC| = k| C|

(by Fubini), the last term in (6.2) is bounded from above by

! 2h"|A\A*|—i ﬁd—ﬁ(a-—%)
Al EIAV= = AN

once if p verifies

2 d 2
min ¢;= -, 2 1—H<1——) <e.
! V4 i=1 pa;

We fix such p which is independent of #.
For any finite constant R>0, letting Sor :={x € R?; |x|<R}, we can bound the
first term at the r.h.s. of (6.2) from above by

ILA(B) — u(B)| —— / dx
Be'P,l;.S;OR;éqb |A|hy, JBcx+h,4

1
L / Ax(Ly(S5) — i(SSR) + 21(S5 ).
|A|h¢ JBcxth,a

Clearly, i, [g ., dx<|4|, and u(Syz)<e/2 for all R=Ry.
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By Lemma 3.2, we have for all >0,

1
lim sup — log sup P {L.(SpHr) — u(Spr) > &}
n xeE

n—oo

(6 < = e+ 1(So) = AltLs,,).

Since limg— o0 A(#lsc, ) =0 by Lemma 3.3, then for any L>0, the Lh.s. above is
bounded from above by —L for all R large enough, say R=R,. Fix R=R, Vv R,
below. Summarizing those estimations we obtain

n—oo

lim sup log sup P, (/ If(x) — Kp, *f(x)|dx>(3)

<(— L)vhm sup log sup Py ( > |L,1(B)—u(B)|>5—3s>. (6.3)
xek BeW,BNSor #0

Step 3: It remains to control the last term in (6.3). Set

Y ={B;Bc ¥,BNSor#0}U{C}, C:= <U B)

BeV

and #(¥)=o{B;B c ¥}, the o-field generated by ¥. Regarding L, and p as
probability measures on #(¥), and denoting the total variation of L, — u on Z(¥)
by || L, — Il i), We have

> LB = uB) <Ly — tll gy = max _(Lu(V) = u(V)),
BeW.BNSor £ % ve{-1,1}"

where {—1, 1}3?' denotes the set of all Z(¥)-measurable fgnctions with values in
{—1, 1} (which can be identified as the set of functions from ¥ to {—1, 1}). Therefore,
for any r>0 fixed,

P, > ILuB) - uB)|>r | <P.| max  L(V)—u(V)>r
14 A

Be¥,BNSoR# W e{-1,1#"

< Z P(Ln(V) — (V) >r).

Ve{-1,1}7

At first by Lemma 3.2, for each V € {—1, 1}‘;' and for all O<e<r,

4N
sup Po(Ly(V) — w(V)>r) < M exp(—nJ y1,(r — €)), Vn> —

xeE

Secondly, the number of elements ¥ is not greater than (ZRP +2) +1=o0(n) by
(1.3), then {—1, l}l‘" has 2°® elements for n large enough. Consequently letting B(1)
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be the unit ball in L*>(u), we have

1
lim sup — log sup |]3’x< Z |Ln(B) — 1(B)| >”>

n—oo 1N xeE BeW,BNSo R~

. 1
< lim sup p log 2°" M VSlulasI()l) exp (—nJ y(r — ¢))
n—oo €

=— inf Jp(r—e
) y(r—e),

where it follows by (6.3),

n— oo

1
lim sup . log sup P, (/ [/ (x) — Kp, * f(x)] dx>(3>
xeE

<(— — i 5 — 4¢

<(=L)Vv < VleIDlB{I) Jy(o 48)).
As L,e>0 are arbitrary and lim,_,o1 inf yega) J (0 — 4¢) = 1(0—) by (2.8), we obtain
the desired (6.2) and then complete the proof of the upper bound in (2.3).
6.2. Proof of Part (b) in Theorem 2.3

Let J(v/P) be the Donsker—Varadhan entropy of v w.r.t. the Markov kernel P
given by (1.5). We have for any 1 <u € b#A(F),

u =l Pry
log — dv = /10 —— dv<NJ(v/P).
/ = PV ; ® PPhy /P)
We get thus
NJ(v/P)> sup / log % dv=Jv/PY), Yve M|(E), YN>1. (6.4)
1 <uehA(E) P'u

By HI1, P/(x,-)< Mu(-). Then

J(v/P)=

/ _
JO/P) > l sup / log L log M | = —h(v/,u) log M,
/ I\ <ucbB(E) u(u) )

where i(v/u) = [ log g_v dv if v<u and +o0o otherwise, is the relative entropy of v
w.r.t. u (the last equaﬁty is the famous variational formula of relative entropy).
Notice that in the i.i.d. case of common law g, its transition is Pyf = u(f) and
h(v/u) = J(v/Py). Hence

1) = inf{h(v/p); ||v — pllry >0},

where the desired inequality (2.5) follows.
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6.3. Proof of Part (c) in Theorem 2.3

This follows from Rio’s deviation inequality [19]. In fact using his inequality, we
have (see [15] for details)

nd*
P i [ >o)<exp| ——— |, Vn=1, 6>0,
W =711 If5 = £l >9) P( 81 +2S¢)2>

where Sy = Z,‘ZOI ¢, where ¢, is the ¢-uniform mixing coefficient given in [19] or
[15]. In the actual Markov context, we have

2¢i.< sup I1PA(x, ) = PR, )iy

x,yeE

and then 254 < S, the quantity in (2.6). S is finite for aperiodic Doeblin recurrent
Markov chain. Moreover by Lemma 3.5, E*||f7, — f|l; — 0. Thus by the lower bound
in (2.3), Rio’s estimate and the right continuity of 1(J), we get

2
8(1 + 5)*°
where the desired inequality (2.6) follows.

-I1(0)< —

7. Proof of Theorem 2.4

Lemma 7.1. Given V € bA(E). If T, is an asymptotically consistent estimator of
)= [z VX)f(x)dx, ie., for each (P,p) € © (satisfying H1 and dp(x)< dx),
(T, V) — (f V)| — 0 in probability P, then
lim 1nf log P.(T, = f,V)>d0)= —inf{J(g); (g—f,V)>d} (7.1)
n—o0o
Proof. It is enough to prove that the Lh.s. of (7.1) is = —J(g) for every g € #(FE)
such that (g — f, V) > and J(g) < +o00. By the Step 3 of the proof of Theorem 2.2, it
suffices to prove it for gdx = v where V' € b#(E) is arbitrary. Its proof, completely
parallel to the Step 2 in the proof of Theorem 2.2, is based on the fact that (9", Vi) €
® again. It is so omitted. [

Lemma 7.2. Under H1, let 1(-) be defined in (2.4). Then
I(r) 1 1

r—0+ V2 2Sup”V”<10' (V) SsupAE%(E)Uz(lA).

(7.2)

Proof. We shall only prove the first equality in (7.2) (the proof of the second is
similar). By (2.8) and Lemma 3.7(b), for any V' € b#A(E) with | V| <1,

(V) li JV(I’—‘F) _ 1
hn,’jo P SIS 2wy

where “<” in the first equality of (7.2) follows.
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For the inverse inequality, let L>1 be arbitrary but fixed. For any >0 small
enough, we have by Lemma 3.7,

3

d—/1(tV) < +o00.

C(Lo)= sup sup s

1€[0,L5] VeB(1)

Thus by the Taylor formula of order 3, we get for any V' € B(1) and r € (0, d],

Jy(r)= sup (tr — AV — w(V)])
1€[0,Lr]

3
= sup (tr — tzaz(V)) — (Lr) - C(L9)
1€[0,L] 2 6
_ 2 3
>’ (L ANoTHV) — [Lro 2(2V)] 02(V)> - (L6r) - C(Lo),

where the last inequality is obtained by taking ¢ = r{L A 6=2(¥)]. Thus by (2.8),

fim inf 22 — lim inf inf 2"
r—>0+ 12 r—>0+ VeB(l) r?
1
> min inf — inf L—L/2
{Ve[B(l): o—2(V)<L 262(V)’ veB(1): U*Z(V)>L( / )}

> minq inf 1 L
- veB() 20X(V)" 2’
where the desired inverse inequality follows by letting L — +oo. O

Proof of Theorem 2.4. (a) By Lemma 7.1, since & is dense in the unit ball of L®(R?)
w.r.t. a(L>®, L),

lim inf % log P,(I T, —f 1, >7)

= lim inf ! log P, (sup (T, —f, V)>r)

n—oo n Ve

1
= sup lim inf —log P,((T, = f, V) >7)

Veg N—>0o0 n
> — inf inf{J(g)l(g —f, V)>r} = —inf{J(g)I sup (g —f, V) >}
Vey Ve

=— il J(g)=—I().
g:llg—fl>r

Thus (2.10) follows from Lemma 7.2. The second claim follows easily from (2.10)
by means of the extra condition on 7, and HI1 (as in Step 1 of the proof of
Theorem 2.2).

(b) It follows from Theorem 2.3 and Lemma 7.2. [
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