期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:123
Existence and convergence results for infinite dimensional nonlinear stochastic equations with multiplicative noise
Article
Barbu, Viorel1,2  Brzezniak, Zdzislaw3  Hausenblas, Erika4  Tubaro, Luciano5 
[1] Alexandru Ioan Cuza Univ, Iasi, Romania
[2] Inst Math Octav Mayer, Iasi, Romania
[3] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[4] Univ Leoben, Dept Math & Informat Technol, A-8700 Leoben, Austria
[5] Univ Trento, Dept Math, Trento, Italy
关键词: Stochastic differential equations;    Brownian motion;    Progressively measurable;    Porous media equations;   
DOI  :  10.1016/j.spa.2012.10.008
来源: Elsevier
PDF
【 摘 要 】

The solution X-n to a nonlinear stochastic differential equation of the form d X-n(t) + A(n)(t) X-n(t) dt - 1/2 Sigma(N)(j=1) (B-j(n)(t))X-2(n)(t) dt = Sigma(N)(j=1) B-j(n)(t)X-n(t)d beta(n)(j)(t) + f(n)(t)dt, X-n(0) = x, where beta(n)(j) is a regular approximation of a Brownian motion beta(j), B-j(n)(t) is a family of linear continuous operators from V to H strongly convergent to B-j(t), A(n)(t) -> A(t), {A(n)(t)} is a family of maximal monotone nonlinear operators of subgradient type from V to V', is convergent to the solution to the stochastic differential equation d X(t) + A(t)X(t) dt - 1/2 Sigma(N)(j=1) B-j(2)(t)X(t) dt = Sigma(N)(j=1) B-j(t)X(t) d beta(j)(t) + f(t) dt, X(0) = x. Here V subset of H congruent to H' subset of V' where V is a reflexive Banach space with dual V' and H is a Hilbert space. These results can be reformulated in terms of Stratonovich stochastic equation dY(t) + A(t)Y(t) dt = Sigma(N)(j=1) B-j(t)Y(t) o d beta(j)(t) + f(t) dt. (C) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2012_10_008.pdf 254KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次