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Abstract

The solution Xn to a nonlinear stochastic differential equation of the form d Xn(t) + An(t)Xn(t) dt −
1
2

N
j=1(B

n
j (t))

2 Xn(t) dt =
N

j=1 Bn
j (t)Xn(t)dβn

j (t) + fn(t) dt , Xn(0) = x , where βn
j is a regular

approximation of a Brownian motion β j , Bn
j (t) is a family of linear continuous operators from V to

H strongly convergent to B j (t), An(t) → A(t), {An(t)} is a family of maximal monotone nonlinear
operators of subgradient type from V to V ′, is convergent to the solution to the stochastic differential
equation d X (t)+ A(t)X (t) dt −

1
2

N
j=1 B2

j (t)X (t) dt =
N

j=1 B j (t)X (t) dβ j (t)+ f (t) dt , X (0) = x .

Here V ⊂ H ∼= H ′
⊂ V ′ where V is a reflexive Banach space with dual V ′ and H is a Hilbert space.

These results can be reformulated in terms of Stratonovich stochastic equation dY (t) + A(t)Y (t) dt =N
j=1 B j (t)Y (t) ◦ dβ j (t)+ f (t) dt .
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1. Introduction

Consider the stochastic differential equation
d X (t)+ A(t)X (t) dt −

1
2

N
j=1

B2
j (t)X (t) dt =

N
j=1

B j (t)X (t) dβ j (t)+ f (t) dt,

t ∈ [0, T ]

X (0) = x

(1.1)

where A(t): V → V ′ is a nonlinear monotone operator, B j (t) ∈ L(V, H), ∀t ∈ [0, T ] and β j
are independent Brownian motions in a probability space {Ω ,F , {Ft }t≥0,P}.

Eq. (1.1) is of course equivalent with the Stratonovich stochastic differential equation

dY (t)+ A(t)Y (t) dt =

N
j=1

B j (t)Y (t) ◦ dβ j (t)+ f (t) dt, t ∈ [0, T ]. (1.1′)

Here V is a reflexive Banach space with dual V ′ such that V ⊂ H ⊂ V ′ algebraically and
topologically, where H (the pivot space) is a real Hilbert space. (The assumptions on A(t), B j (t)
will made precise later on.)

We associate with (1.1) the random differential equationdy

dt
+ Λ(t)y = g(t), t ∈ [0, T ],P-a.s.

y(0) = x,
(1.2)

where g(t) = e
N

j=1 β j (t)B∗
j (t) f (t), B∗

j (t) is the adjoint of B j (t) and Λ(t) is the family of
operators

Λ(t)y = e−
N

j=1 β j (t) B j (t)A(t)e
N

j=1 β j (t) B j (t)y

+

N
j=1

 β j (t)

0
e−s B j (t) Ḃ j (t)e

s B j (t)y ds, ∀y ∈ V (1.3)

where Ḃ j is the derivative of t → B j (t) ∈ L(V, H) and (es B j (t))s∈R is the C0-group generated
by B j (t) on H and V .

It is well known (see e.g., [18, p. 202], [14,21]) that assuming that B j Bk(t) = Bk(t)B j (t) for
all j , k, at least formally Eqs. (1.1) and (1.2) are equivalent via the transformation

X (t) = e
N

j=1 β j (t) B j (t)y(t), P-a.s., t ∈ [0, T ], (1.4)

and this is indeed the case if (1.2) has a strong, progressively measurable solution y: [0, T ] ×

Ω → H .
We consider also the family of approximating stochastic equations

d

dt
Xn + An(t)Xn =

N
j=1

Bn
j (t)Xn(t)β̇

n
j (t)+ fn(t), P-a.s.

Xn(0) = x

(1.5)
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where {βn
j } is a sequence of smooth stochastic processes convergent to β j , that is βn

j (t) → β j (t)
uniformly on [0, T ], P-a.s. and An → A, Bn

j → B j , fn → f as n → ∞ in a sense to be made
precise below.

Eq. (1.5) is just an approximation of Stratonovich equation (1.1′) where βn
j is a regularization

of β j . One must emphasize that {βn
} might be adapted to a filtration different from {Ft }.

Eq. (1.5) reduces via (1.4), that is

Xn(t) = e
N

j=1 β
n
j (t) Bn

j (t)yn(t) (1.4n)

to a random differential equation of the form (1.2) that isdyn

dt
+ Λn(t)yn = gn(t), t ∈ [0, T ],P-a.s.

yn(0) = x
(1.2n)

where gn(t) = e
N

j=1 β
n
j (t)B

n
j
∗(t) fn(t) and Λn are given by

Λn(t) = e−
N

j=1 β
n
j (t) Bn

j (t)An(t)e
N

j=1 β
n
j (t) Bn

j (t)

+

N
j=1

 βn
j (t)

0
e−s Bn

j (t) Ḃn
j (t)e

s Bn
j (t)y ds. (1.3n)

The main result (see Theorems 2.1–2.3 below) is that under suitable assumptions Eqs. (1.2),
(1.2n) have unique solutions y and yn which are progressively measurable processes and for
n → ∞, we have yn → y, Xn → X in a certain precise sense. In the linear case such a
result was established by a different method in [14], (we refer also to [17,21] to other results in
this direction). The variational method we use here allows to treat a general class of nonlinear
equations (1.1) possibly multi-valued (On these lines see also [3,4]).

The applications given in Section 4.1 refer to stochastic porous media equations and nonlinear
stochastic diffusion equations of divergence type but of course the potential area of applications
is much larger.

Notation. If Y is a Banach space we denote by L p(0, T ; Y ), 1 ≤ p ≤ ∞ the space of all
(equivalence classes of) strongly measurable functions u: (0, T ) → Y with ∥u∥Y ∈ L p(0, T )
(here ∥ · ∥Y is the norm of Y ). Denote by C([0, T ]; Y ) the space of all continuous Y -valued
functions on [0, T ] and by W 1,p([0, T ]; Y ) the infinite dimensional Sobolev space {y ∈

L p(0, T ; Y ), dy
dt ∈ L p(0, T ; Y )} where d

dt is considered in the sense of vectorial distributions. It
is well known that W 1,p([0, T ]; Y ) coincides with the space of absolutely continuous functions
y: [0, T ] → Y , a.e. differentiable and with derivative y′(t) =

dy
dt (t) a.e. t ∈ (0, T ) and

dy
dt ∈ L p(0, T ; Y ) (see e.g., [5]). If p ∈ [1,∞] is given we denote by p′ the conjugate exponent,
i.e., 1

p +
1
p′ = 1.

2. The main results

We shall study here Eq. (1.2) under the following assumptions.

(i) V is a separable real reflexive Banach space with the dual V ′ and H is a separable real
Hilbert space such that V ⊂ H ⊂ V ′ algebraically and topologically.
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We denote by | · |, ∥ · ∥V and ∥ · ∥V ′ the norms in H , V and V ′, respectively and by ⟨·, ·⟩

the duality pairing on V × V ′ which coincides with the scalar product (·, ·) of H on H × H .
(ii) A(t)y = ∂ψ(t, y), a.e. t ∈ (0, T ), ∀y ∈ V , P-a.s., where ψ : (0, T )× V ×Ω → R is convex

and lower-semicontinuous in y on V and measurable in t on [0, T ]. There are αi > 0,
γi ∈ R, i = 1, 2, 1 < p1 ≤ p2 < ∞

γ1 + α1 ∥y∥
p1
V ≤ ψ(t, y) ≤ γ2 + α2 ∥y∥

p2
V , ∀y ∈ V . (2.1)

(iii) There are C1, C2 ∈ R+ such that

ψ(t,−y) ≤ C1 ψ(t, y)+ C2, ∀y ∈ V, t ∈ (0, T ). (2.2)

(The constants Ci , γi , αi are dependent on ω.)
(iv) For each y ∈ V the stochastic process ψ(t, y) is progressively measurable with respect to

filtration {Ft }t≥0.
(v) B j (t) is a family of linear, closed and densely defined operators in H such that B j (t) =

−B∗

j (t), ∀t ∈ [0, T ], B j (t) generates a C0-group (es B j (t))s∈R on H and V . Moreover,

B j ∈ C1([0, T ]; L(V, H)), B j (t)Bk(t) = Bk(t)B j (t) for all j , k.

(vi) f : [0, T ] × Ω → V ′ is progressively measurable and f ∈ L p′

1(0, T ; V ′), P-a.s.

We note that by (ii) A(t, ω): V → V ′ is, for all t ∈ [0, T ] and ω ∈ Ω , maximal monotone and
surjective (see [5]) but in general multi-valued if ψ is not Gâteaux differentiable in y.

Theorem 2.1. Let y0 ∈ H. Then under assumptions (i)–(vi) there is for each ω ∈ Ω a unique
function y = y(t, ω) to Eq. (1.2) which satisfies

y ∈ L p1(0, T ; V ) ∩ C([0, T ]; H) ∩ W 1,p′

2([0, T ]; V ′), (2.3)dy

dt
(t)+ Λ(t)y(t) ∋ g(t), a.e. t ∈ (0, T ),

y(0) = y0.
(2.4)

Moreover, the process y: [0, T ] × Ω → H is progressively measurable with respect to the
filtration {Ft }t≥0.

By
G
→ we denote the variational or Γ -convergence. This means that for each y ∈ V and

ξ ∈ A(t)y there are yn and ξn ∈ A(t)y such that yn → y strongly in V , ξn → ξ strongly
in V ′ and similarly for A−1

n (t) → A−1(t). Assumption (2.5) implies and is equivalent to:
ψn(t, z) → ψ(t, z), ψ∗

n (t, z̃) → ψ∗(t, z̃) for all z ∈ V , z̃ ∈ V ′ and t ∈ [0, T ] where ψ∗ is
the conjugate of ψ (see Appendix).

Theorem 2.2. Assume that for each n, Λn , Bn
j and fn satisfy (i)–(iv). Then for any y0 ∈ V

there is a unique function yn = yn(t, ω) which satisfies (2.3) and Eq. (2.4) with Λn instead of Λ.
Moreover, assume that for n → ∞

An(t)
G
→ A(t), t ∈ [0, T ]

A−1
n (t)

G
→ A−1(t), t ∈ [0, T ]

(2.5)

fn(·, ω) → f (·, ω), strongly in L p′

2(0, T ; V ′),P-a.s. in Ω . (2.6)

Bn
j x → B j x, in C1([0, T ]; H),∀x ∈ H. (2.7)
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Then for n → ∞

yn(·, ω) → y(·, ω) (2.8)

P-a.s. weakly in L p1(0, T ; V ), weakly-star in L∞(0, T ; H).

Assumption (2.5) implies and is equivalent to: ψn(t, z) → ψ(t, z), ψ∗
n (t, z̃) → ψ∗(t, z̃) for

all z ∈ V , z̃ ∈ V ′ and t ∈ [0, T ] where ψ∗ is the conjugate of ψ (see e.g., [1]).

Coming back to Eq. (1.1) we say that the process X : [0, T ] → H is a solution to (1.1), if it is
progressively measurable with respect to the filtration {Ft }t≥0 induced by the Brownian motion,

X ∈ C([0, T ], H) ∩ L p1(0, T ; V ), P-a.s. (2.9)

and

X (t) = x −

 t

0
A(s)X (s) ds +

1
2

N
j=1

 t

0
B2

j (s)X (s) ds

+

N
j=1

 t

0
B j (s)X (s)dβ j (s)+

 t

0
f (s) ds, ∀t ∈ [0, T ],P-a.s. (2.10)

By Theorems 2.1 and 2.2 we find the following.

Theorem 2.3. Under the assumptions of Theorem 2.1 there exist unique solutions X and Xn
to (1.1) and (1.5) respectively given by

X (t) = e
N

j=1 β j (t)B j (t)y(t), Xn(t) = e
N

j=1 β
n
j (t)B

n
j (t)yn(t), (2.11)

where y and yn are solutions to (1.2) and (1.2n). Moreover, we have

X, Xn ∈ L p1(0, T ; V ), P-a.s. (2.12)

X, Xn : [0, T ] → H are P-a.s. continuous and

Xn → X weakly in L p1(0, T ; V ),weakly-star in L∞(0, T ; H),P-a.s. (2.13)

The precise meaning of Theorems 2.2 and 2.3 is the structural stability of the Itô stochastic
differential equation (1.1) and of its Stratonovich counterpart (1.1′). As a matter of fact, as
mentioned earlier, all these results can be reformulated in terms of Stratonovich equation (1.1′).

One of the main consequences of Theorem 2.2 is that the Stratonovich stochastic equation is
stable with respect to smooth approximations of the process B(t)Xdβ(t). On the other hand,
the general existence theory for infinite dimensional stochastic differential equations with linear
multiplicative noise (see e.g., [16,18]) is not applicable in the present situation due to the fact
that the noise coefficient x → B(t)x is not bounded on the basic space H . The approach we use
here to treat Eq. (2.4) relies on the Brezis–Ekeland variational principle [12,13] which allows
to reduce nonlinear evolution equations of potential type to convex optimization problems. (On
these lines see also [3,4,10,22,24]).

The more general case of nonlinear monotone and demicontinuous operators A(t): V → V ′ is
ruled out from present theory and might expect however to extend the theory to this general case
by using Fitzpatrick function formalism (see [22,24]).
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As in [14], see Corollary on p. 438, we can define a solution to problem (1.1′) for any
deterministic continuous function β : R+ → RN . The result from [14] was a generalization of a
analogous result from Sussmann’s well known paper [23]; see also Doss [19]. We will formulate
our result in the same fashion as in [14], i.e. the result contains implicitly a definition. Let us
observe, that in this case, we prove the existence for any multidimensional continuous signal,
thus a signal more general than a rough signal from the theory of rough paths. However, this is
due to the assumption of the commutativity of the vector fields B j , j = 1, . . . , N . In the result
below, we need deterministic versions of assumptions (ii), (vi). Note that the assumption (iv) is
now redundant.

(ii’) A(t)y = ∂ψ(t, y), a.e. t ∈ (0, T ), ∀y ∈ V , where ψ : (0, T ) × V → R is convex and
lower-semicontinuous in y on V and measurable in t on [0, T ]. There exist αi > 0, γi ∈ R,
i = 1, 2, 1 < p1 ≤ p2 < ∞, such that

γ1 + α1 ∥y∥
p1
V ≤ ψ(t, y) ≤ γ2 + α2 ∥y∥

p2
V , ∀y ∈ V . (2.14)

(vi’) f ∈ L p′

1(0, T ; V ′).

Theorem 2.4. Assume that the assumptions (i), (iii), (v) as well as (ii′) and (vi′) are satisfied.
Then for every x ∈ V and every β ∈ C([0, T ]; RN ), the problemd X (t)+ A(t)X (t) dt =

N
j=1

B j (t)X (t) dβ j (t)+ f (t) dt, t ∈ [0, T ]

X (0) = x

(2.15)

has a unique solution X ∈ L p1(0, T ; V ) ∩ C([0, T ]; H) in the following sense.

(i) For every β ∈ C1([0, T ]; RN ), the problem (2.15) has a unique solution X ∈ L p1(0, T ; V )∩
C([0, T ]; H).

(ii) If βn ∈ C1([0, T ]; RN ) and βn → β in C([0, T ]; RN ) and Xn ∈ L p1(0, T ; V ) ∩

C([0, T ]; H) is the (unique) solution to the problem (2.15) corresponding to βn , then
Xn → X weakly in L p1(0, T ; V ),weakly-star in L∞(0, T ; H),P-a.s.

From Theorem 2.4 we infer that in the framework of Theorem 2.4 but with β being a Brownian
motion, the problem (1.1) generates a random dynamical system on H . In an obvious way we
have the following corollary.

Corollary 1. Assume that the assumptions (i), (iii), (v) as well as (ii′) and (vi′) are satisfied.
Assume that β is a standard canonical two-sided RN -valued Brownian motion on a filtered
probability space {Ω ,F , {Ft }t≥0,P}, where Ω = {ω ∈ C(R,RN ) : ω(0) = 0}. Let us define a
map

ϑ : R × Ω ∋ (t, ω) → ϑtω = ω(· + t)− ω(0) ∈ Ω .

Then there exists a map

ϕ : R+
× Ω × H ∋ (t, ω, x) → ϕ(t, ω)x ∈ H

such that a pair (φ, ϑ) is a random dynamical system on H, see for instance Definition 2.1
in [15], and, for each s ∈ R and each x ∈ H, the process X, defined for ω ∈ Ω and t ≥ s as

X (t, s;ω, x) := ϕ(t − s;ϑsω)x, (2.16)

is a solution to problem (1.1) over the time interval [s,∞) with an initial data given at time s.



940 V. Barbu et al. / Stochastic Processes and their Applications 123 (2013) 934–951

Remark 2.1. Theorem 2.4 provides a solution to problem (2.15) for every continuous path. Our
main result provides a natural interpretation of this solution in the case when β is a Brownian
motion. One can also provide a similar interpretation when β is fractional; see for instance [20].

Corollary allows one to investigate the existence of random attractors; see [15].

These questions will be investigated in the future works.

3. Proofs

Proof of Theorem 2.1. For simplicity we consider the case N = 1, that is B j = B, β j = β for
all 1 ≤ j ≤ 1.

We note first that though the operator Λ(t) = Λ(t, ω) is P-a.e. ω ∈ Ω , maximal monotone from
V to V ′ the standard existence theory (see e.g., [5, p. 177]) does not apply here. This is, however,
due to the general growth condition (2.1) on ψ(t, ·) and implicitly on A(t) as well as due to the
multivaluedness of A(t).

So we shall use a direct approach which makes use of the variational structure of problem (1.2).
(On these lines see also [3], [10, p. 280]). Namely, we can write

Λ(t) = ∂ϕ(t, ·)+ Γ (t), ∀t ∈ [0, T ]. (3.1)

Here ϕ: [0, T ] × V → R is given by

ϕ(t, y) = ψ(t, eβ(t)B(t)y) (3.2)

and

Γ (t)y =

 β(t)

0
e−s B(t) Ḃ(t)es B(t)y ds, ∀y ∈ H, t ∈ [0, T ]

where Ḃ =
d
dt B(t). We fix ω ∈ Ω .

By the conjugacy formulae (A.3) and (A.4) we now may equivalently write (1.2) (or (2.4)) as
ϕ(t, y(t))+ ϕ∗(t, u(t)) = ⟨y(t), u(t)⟩, a.e. t ∈ [0, T ]

y′(t)+ Γ (t)y(t) = −u(t)+ g(t), a.e. t ∈ [0, T ]
(3.3)

while

ϕ(t, ȳ)+ ϕ∗(t, ū) ≥ ⟨ȳ, ū⟩

for all (ȳ, ū) ∈ L p1(0, T ; V )× L p′

2(0, T ; V ′).
Thus following a well known idea due to Brezis and Ekeland (see e.g., [12,13]) we are lead to

the optimization problem

Min
 T

0


ϕ(t, y(t))+ ϕ∗(t, u(t))− ⟨u(t), y(t)⟩


dt : y′

+ Γ (t)y

= −u + g, a.e. t ∈ [0, T ]; y(0) = y0, y ∈ L p1(0, T ; V ), u ∈ L p′

2(0, T ; V ′)


. (3.4)

Equivalently

Min
 T

0


ϕ(t, y(t))+ ϕ∗(t, u(t))− ⟨g(t), y(t)⟩


dt
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+
1
2


|y(T )|2 − |y0|

2
: y′

+ Γ (t)y = −u + g, a.e. t ∈ [0, T ]; y(0)

= y0, y ∈ L p1(0, T ; V ), u ∈ L p′

2(0, T ; V ′)


. (3.5)

Here we have used (for the moment, formally) the integration by parts formula

−

 T

0
⟨u(t), y(t)⟩ dt =

1
2


|y(T )|2 − |y0|

2
+

 T

0
⟨Γ (t)y(t), y(t)⟩ dt

−

 T

0
⟨g(t), u(t)⟩ dt

and hypothesis (v) which implies that ⟨Γ (t)y, y⟩ = 0. Of course the equivalence of (3.4) and
(3.5) is valid only if the above equality is true which is not always the case in the absence of some
additional properties of minimizer y to allow integration by parts in

 T
0 ⟨u(t), g(t)⟩ dt . In the

following we shall prove however that Eq. (3.5) has at least one solution and show consequently
that it is also a solution to Eq. (2.4).

Lemma 3.1. There is a solution y∗
∈ L p1(0, T ; V ) ∩ W 1,p′

2([0, T ]; V ′) to Eq. (3.5).

Proof. We note that by the standard existence theory of linear evolution equations for each u ∈

L p′

2(0, T ; V ′) there is a unique solution y ∈ L p2(0, T ; V ) ∩ W 1,p′

2([0, T ]; V ′) ⊂ C([0, T ]; H)
to equation

y′
+ Γ (t, y) = −u + g, a.e. t ∈ [0, T ], y(0) = y0.

By assumptions (2.1) and (2.2) we have

γ̃1 + α̃1 ∥y∥
p1
V ≤ ϕ(t, y) ≤ γ̃2 + α̃2 ∥y∥

p2
V , ∀y ∈ V (3.6)

and

γ̄1 + ᾱ1 ∥y∥
p′

2
V ′ ≤ ϕ∗(t, y) ≤ γ̄2 + ᾱ1 ∥y∥

p′

1
V ′ , ∀y ∈ V ′ (3.7)

where γ̃i , γ̄i ∈ R, 1
pi

+
1
p′

i
= 1 and α̃i , ᾱi > 0, i = 1, 2. (Recall that es B(t) is invertible).

Then the infimum m∗ in (3.5) is > −∞ and there are the sequences {y j } ⊂ L p1(0, T ; V ),
{u j } ⊂ L p′

2(0, T ; V ′) such that for all y

m∗
≤

 T

0


⟨ϕ(t, y j )⟩ + ϕ∗(t, u j )− ⟨g, y j ⟩


dt +

1
2


|y j (T )|

2
− |y0|

2
≤ m∗

+
1
j

(3.8)
y′

j + Γ (t)y j = −u j + g, in [0, T ]

y j (0) = y0.
(3.9)

Clearly y j ∈ W 1,p′

2([0, T ]; V ′) and by assumption (2.1) and inequality (3.8) it follows that

∥y j∥L p1 (0,T ;V ) + ∥y′

j∥L p′
2 (0,T ;V ′)

≤ C (3.10)

because as easily seen by assumption (v), |Γ (t)y|H ≤ C∥y∥V , ∀y ∈ V .
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Hence on a subsequence, again denoted by y j , we have for j → ∞

y j → y∗ weakly in L p1(0, T ; V )

u j → u∗ weakly in L p′

2(0, T ; V ′) (3.11)

y′

j → (y∗)′ = g − u∗
− Γ (t)y∗ weakly in L p′

2(0, T ; V ′).

Since the functions y →
 T

0 ϕ(t, y) dt and u →
 T

0 ϕ∗(t, u) dt are weakly lower-

semicontinuous on L p1(0, T ; V ) and L p′

2(0, T ; V ′) respectively, letting j tend to infinity we
obtain that

m∗
=

 T

0


ϕ(t, y∗)+ ϕ∗(t, u∗)− ⟨g, y∗

⟩


dt +
1
2


|y∗(T )|2 − |y0|

2 (3.12)

and 
(y∗)′ + Γ (t)y∗

= −u∗
+ g, t ∈ [0, T ]

y∗(0) = y0.
(3.13)

Therefore (y∗, u∗) is a solution to optimization problem (3.5) as claimed. �

Proof of Theorem 2.1 (Continued). We shall show now that y∗ given by Lemma 3.1 is a solution
to (2.4). To this end we notice just that without any loss of generality we may assume that y0 = 0.
Indeed we can reduce the problem to this case by translating in problem (2.3) y in y − y0.

We prove now that m∗
= 0. For this purpose we invoke a standard duality result for infinite

dimensional convex optimal control problems, essentially due to Rockafeller. Namely, one has
(see [10, Theorem 4.6, p. 287])

m∗
+ min (3.5

′

) = 0 (3.14)

where (3.5
′

) is the dual control problem

Min
 T

0


ϕ(t,−p(t))+ ϕ∗(t, v(t))+ ⟨g(t), p(t)⟩


dt +

1
2
|p(T )|2 : p′

+ Γ (t)p

= v + g, t ∈ [0, T ]


. (3.5′)

If (p∗, v∗) ∈ L p1(0, T ; V )× L p′

2(0, T ; V ′) is optimal in (3.5
′

), we have

⟨(p∗)′, p∗
⟩ ∈ L1(0, T ) (3.15) T

0
⟨(p∗)′, p∗

⟩ dt =
1
2


|p∗(T )|2 − |p∗(0)|2


. (3.16)

Here is the argument. First, note that p′ solves p′
+ Γ (t)p = v + g. We have by the identities

(A.3) and (A.4) and the fact that ⟨Γ (t)p∗, p∗
⟩ = 0,

−⟨(p∗(t))′, p∗(t)⟩ ≤ ϕ∗(t, v∗(t))+ ϕ(t,−p∗(t))− ⟨g(t), p∗(t)⟩, a.e. t ∈ (0, T )

and

⟨(p∗(t))′, p∗(t)⟩ ≤ ϕ∗(t, v∗(t))+ ϕ(t, p∗(t))+ ⟨g(t), p∗(t)⟩, a.e. t ∈ (0, T ).
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Since ϕ(t,−p∗) ∈ L1(0, T ) and by assumption (2.2), ϕ(t, p∗) ∈ L1(0, T ) too, we infer that
(3.15) holds. Now since p∗

∈ W 1,p′

2([0, T ]; V ′) ∩ L p1(0, T ; V ′) we have

1
2

d

dt
|p∗(t)|2 = ⟨(p∗)′(t), p∗(t)⟩, a.e. t ∈ (0, T )

and by (3.15) we get (3.16) as claimed.

By (3.5
′

) and (3.16) we see that

min (3.5
′

) =

 T

0


ϕ(t,−p∗)+ ϕ∗(t, v∗)+ ⟨v∗, p∗

⟩


dt +
1
2
|p∗(0)|2 ≥ 0.

Similarly, by (3.12), (3.13) and by

1
2


|y∗(T )|2 − |y∗(0)|2


=

 T

0
⟨(y∗)′, y∗

⟩ dt,

(the latter follows exactly as (3.16)) we see that

m∗
=

 T

0


ϕ(t, y∗)+ ϕ∗(t, u∗)− ⟨u∗, y∗

⟩


dt ≥ 0.

Then by (3.14) we have that m∗
= 0 and therefore again by (3.12) we have that

ϕ(t, y∗)+ ϕ∗(t, u∗) = ⟨u∗, y∗
⟩, a.e. in [0, T ]

(y∗)′ + Γ (t)y∗
= g − u∗ a.e. in [0, T ]

and therefore y∗ is a solution to (2.4).

On the other hand, as seen earlier, we have

1
2


|y∗(t)|2 − |y∗(s)|2


=

 t

s
⟨(y∗)′(τ ), y∗(τ )⟩ dτ, ∀ 0 ≤ s ≤ t ≤ T . (3.17)

Hence y∗
∈ C([0, T ]; H). The uniqueness of y∗ is immediate by (3.17). It remains to be proven

that y∗ is progressively measurable.

To this end we note as minimum in (3.5) the pair (y∗, u∗) is the solution to the Euler–Lagrange
system (see e.g., [10, p. 263])

(y∗)′ + Γ (t)y∗
= −u∗

+ g, a.e. t ∈ (0, T ), ω ∈ Ω
q ′

− Γ ′(t)q = −g + A(t)y∗, a.e. t ∈ (0, T )

u∗(t) = A(t)q(t), a.e. t ∈ (0, T ), ω ∈ Ω
y∗(0) = y0, q(T ) = −y∗(T ).

Since the latter two point boundary value problem has a unique solution (y∗, q) and is of
dissipative (accretive) type it can be solved by iteration or more precisely by a gradient algorithm
(see [10, p. 252]). In particular, we have y∗

= limk→∞ yk , q = limk→∞ qk weakly in
L p1(0, T ; V ) and u∗

= limk→∞ uk weakly in L p′

2(0, T ; V ′) where

y′

k + Γ (t)yk = −uk + g t ∈ [0, T ],

q ′

k − Γ ′(t)qk = −g + A(t)yk, t ∈ [0, T ],

uk+1 = uk − A−1(t)uk + qk, t ∈ [0, T ],

yk(0) = y0, qk(T ) = 0, k = 0, 1, 2, . . . .
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Hence, if we start with a progressively measurable u0, we see that all uk are progressively
measurable and so are u∗ and y∗. �

Proof of Theorem 2.2. As in the previous case it follows that (1.2n) has a unique solution
yn ∈ W 1,p′

2([0, T ]; V ′) ∩ L p1(0, T ; V ) given by the minimization problem (3.5) where g = gn
and ϕ = ϕn , ϕ∗

= ϕ∗
n . Here ϕn is given as in (3.2) where ψ = ψn and β is replaced by βn while

ϕ∗
n is the conjugate of ϕn . We have, similarly, ∂ψn = An and ϕn(t, y) = ψn(t, eβn(t)y)

(yn, un) = arg min
 T

0
ϕn(t, y(t))+ ϕ∗

n (t, u(t))− ⟨gn(t), u(t)⟩ dt

+
1
2
(|y(T )|2 − |y0|

2); y′
+ Γn y = −u + gn, y(0) = y0


.

Here Γn(t)y =
 βn(t)

0 e−s Bn(t) Ḃn(t)es Bn(t)y ds.

We see that

∥yn∥L∞(0,T ;H) + ∥yn∥L p1 (0,T ;V ) +

dyn

dt


L p′

2 (0,T ;V ′)

+ |yn(T )| ≤ C,

and this implies that on a subsequence, again denoted by {n}, we have

un → ũ weakly in L p′

2(0, T ; V ′)

yn −→ ỹ weakly in L p1(0, T ; V )
yn −→ ỹ weakly-star in L∞(0, T ; H)
dyn

dt
−→

d ỹ

dt
weakly in L p′

2(0, T ; V ′)

yn(T ) −→ ỹ(T ) weakly in H.

(3.18)

By (2.5), (2.6) we see that ỹ′
+ Γ ỹ = −ũ + g.

Moreover, we have T

0


ϕn(t, yn(t))+ ϕ∗

n (t, un(t))− ⟨gn(t), yn(t)⟩


dt +
1
2
|yn(T )|

2

≤

 T

0


ϕn(t, y∗(t))+ ϕ∗

n (t, u∗(t))− ⟨gn(t), u∗(t)⟩


dt +
1
2
|y∗(T )|2

where (y∗, u∗) is the solution to (3.5). Now by assumptions (2.5) and (2.6) we have

ϕn(t, y∗(t)) → ϕ(t, y∗(t))

ϕ∗
n (t, u∗

n(t)) → ϕ∗(t, u∗(t)) ∀t ∈ [0, T ],

gn(t) → g(t)

and this yields

lim sup
n→∞

 T

0


ϕn(t, yn)+ ϕ∗

n (t, un)− ⟨gn, yn⟩


dt +
1
2
|y∗

n (T )|
2
−

1
2
|y0|

2
= 0. (3.19)

In order to pass to limit in (3.19) we shall use (3.18) and the convergence of {ϕn} and {ϕ∗
n }

mentioned above. We set z̃(t) = eβ(t) B(t) ỹ(t), zn(t) = eβn(t) B(t)yn(t). We have

ψn(t, z̃(t)) ≤ ψn(t, zn(t))+ ⟨An(t, z̃(t)), z̃(t)− zn(t)⟩,
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and since ∂ψ∗
n = A−1

n we have also that

ψ∗
n (t, θ(t)) ≤ ψ∗

n (t, θn(t))+ ⟨A−1
n (t)(t, θ(t)), θ(t)− θn(t)⟩, a.e. t ∈ (0, T )

where θ(t) = g(t)− ỹ′(t), θn(t) = gn(t)− y′
n(t).

Then by assumption (2.5) and Eq. (3.19) we have that

lim sup
n→∞

 T

0


ϕn(t, ỹ(t))+ ϕ∗

n (t, g(t)− ỹ′(t))− ⟨g(t), ỹ′(t)⟩


dt

+
1
2
|ỹ∗(T )|2 −

1
2
|y0|

2
= 0,

and so, since as seen earlier (2.5) implies that ϕn(t, z) → ϕ(t, z), ∀z ∈ V , ϕ∗
n (t, z∗) → ϕ∗(t, z∗),

∀z∗
∈ V ′, by the Fatou lemma, we have T

0


ϕ(t, ỹ)+ ϕ∗(t, ũ)− ⟨g, ỹ⟩


dt +

1
2
|ỹ∗(T )|2 −

1
2
|y0|

2
≤ 0,

which implies as in the previous case that ỹ is a solution to (3.5) and therefore to (2.4) as
claimed. �

4. Examples

The specific examples to be presented below refer to nonlinear parabolic stochastic equations
which can be written in the abstract form (1.1) where A(t) are subpotential monotone and
continuous operators from a separable Banach space V to its dual V ′.

We briefly present below a few stochastic PDEs to which the above theorems apply. We
use here the standard notations for spaces of integrable functions and Sobolev spaces
W 1,p

0 (O),W −1,p′

(O) =

W 1,p

0 (O)
′
, H k(O), k = 1, 2 on open domains O ⊂ Rd .

4.1. Nonlinear stochastic diffusion equations

Consider the stochastic equation
d X t − divξ a(t,∇ξ X t ) dt −

1
2

b(t, ξ) · ∇ξ (b(t, ξ) · ∇ξ X t ) dt

= b(t, ξ) · ∇ξ X t dβ(t), in (0, T )× O
X0 = x in O
X t = 0 on (0, T )× ∂O.

(4.1)

Here a: (0, T )× Rd
→ Rd is a map of gradient type, i.e.,

a(t, y) = ∂ j (t, y), ∀y ∈ Rd , t ∈ (0, T )

where j : (0, T )× Rd
× Ω → R is convex in y, progressively measurable in (t, ω) ∈ [0, T )× Ω

and

γ1 + α1 |y|
p1 ≤ j (t, y) ≤ γ2 + α2 |y|

p2 , ∀y ∈ Rd , ω ∈ Ω , t ∈ (0, T ) (4.2)

j (t,−y) ≤ c1 j (t, y)+ c2, ∀y ∈ Rd , t ∈ (0, T ). (4.3)

It should be emphasized that the mapping r → a(t, r) might be multivalued and discontinuous.
As a matter of fact if a(t, ·) is discontinuous at r = r j , but left and right continuous (as happens
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by monotonicity) it is replaced by a multivalued maximal monotone mapping ã obtained by
filling the jumps at r = r j .

Eq. (4.1) is of the form (1.1) where H = L2(O), V = W 1,p1
0 (O), A(t) = ∂ψ(t, ·), 2 ≤ p1 ≤

p2 < ∞,

ψ(t, u) =


O

j (t,∇u) dξ, ∀u ∈ W 1,p1
0 (O)

and

B(t)u = b(t, ξ) · ∇ξu = divξ (b(t, ξ)u), ∀u ∈ W 1,p1
0 (O). (4.4)

As regards the function b(t, r): [0, T ] × Rd
→ Rd we assume that

b(t, ·),
∂b

∂r
(t, ·) ∈


C([0, T ]; Ō)

d (4.5)

r → b(t, ·)+ αr is monotone for some α ≥ 0, (4.6)

divξb(t, ξ) = 0, b(t, ξ) · ν(ξ) = 0 ∀ξ ∈ ∂O (4.7)

where ν is the normal to ∂O . (The boundary ∂O is assumed to be of class C1.) Here divξb is
taken in the sense of distributions on O .

Then (4.4) defines a linear continuous operator B(t) from V to H = L2(O) which as early
seen is densely defined skew-symmetric, that is −B(t) ⊂ B∗(t)∀t ∈ [0, T ]. Moreover, B(t) is
m-dissipative in L2(O), that is the range of u → u − B(t)u is all of L2(O). Indeed for each
f ∈ L2(O) the equation u − B(t)u = f has the solution

u(ξ) =


∞

0
e−s f (Z(s, ξ)) ds, ∀ξ ∈ O,

where s → Z(s, ξ) is the differential flow defined by equation

d Z

ds
= b(t, Z), s ≥ 0, Z(0) = ξ. (4.8)

(By assumptions (4.6), (4.7), it follows that t → Z(t, ξ) is well defined on [0,∞).)

Hence, for each t ∈ [0, T ], B(t) generates a C0-group (es B(t))s∈R on L2(O) which is given by
eB(t)s f


(ξ) = f (Z(s, ξ)), ∀ f ∈ L2(O), s ∈ R.

It is also clear that eB(t)s V ⊂ V for all s ≥ 0.

Remark 4.1. Assumptions (4.5)–(4.7) can be weakened to discontinuous multivalued mappings
ξ → b(t, ξ) satisfying (4.6), (4.7) such that the solution Z = Z(s, ξ ; t) to the characteristic
system (4.8) is differentiable in t . The details are omitted.

The corresponding random differential equation (1.2) has the form

∂y

∂t
− eβ(t)B(t)divξ (a(t,∇ξ e−β(t)B(t)y))

+

 β(t)

0
es B(t) Ḃ(t)e−s B(t)y ds = 0, in (0, T )× O,

y(0, ξ) = x(ξ) in O,
y(t, ξ) = 0 on (0, T )× ∂O.

(4.9)
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Then by Theorem 2.1 we have the following.

Theorem 4.1. There exists a solution X to (4.1) such that P-a.s. X ∈ L p1(0, T ; W 1,p1
0 (O)) ∩

L p′

2(0, T ; W −1,p′

2(O)) ∩ L∞(0, T ; L2(O)).

We also note that in line with Theorem 2.2 if Xn , n ∈ N, are solutions to equations
d Xn

t − divξan(t,∇ξ Xn
t ) dt −

1
2

bn(t, ξ) · ∇

bn(t, ξ)X

n
t


dt

= bn(t, ξ) · ∇ξ Xn
t dβn(t), (t, ξ) in (0, T )× O,

Xn
0 = x in O,

Xn
t = on (0, T )× ∂O,

(4.10)

where bn → b uniformly on [0, T ] × O and an(t, y) → a(t, y), a−1
n (t, y) → a−1(t, y),

βn(t) → β(t) for all y ∈ Rd , t ∈ [0, T ), then Xn
→ X weakly in L p1(0, T ; W 1,p1

0 (O)).
Standard examples refer to structural stability, PDEs as well as to homogenization type results
for Eq. (4.1). In the latter case an(t, z) = a(t, nz) where a(t, ·) is periodic (see e.g., [2]).

Eq. (4.1) is relevant in the mathematical description of nonlinear diffusion processes perturbed
by a Brownian distribution with coefficient transport term b(t, ξ) · ∇ξ X .

The assumption p1 ≥ 2 was taken here for technical reason required by the functional
framework we work in and this excludes several relevant examples. For instance, the limit case
p1 = 1 which corresponds to the nonlinear diffusion function a(t, y) = ρ

y
|y|d

, ρ > 0, which
is relevant in material science and image restoring techniques (see e.g. [6,5]) is beyond our
approach and requires a specific treatment (see also [7] for the treatment of a similar problem
with additive and continuous noise).

In 2-D the appropriate functional setting to treat such a problem is V = BV (O) the
space of functions with bounded variation on O with the norm ϕ(y) and H = L2(O). Here
ϕ(y) = ∥Dy∥(O) +


∂O |γ0(y)|dH , y ∈ V , ∥Dy∥(O) is the variation of y ∈ V , γ0(y) is the

trace on ∂O and H is the Hausdorff measure on ∂O . We recall that the norm ϕ is just the lower
semicontinuous closure of the norm of Sobolev space W 1,1

0 (O) (see e.g., [2, p. 438]). Then the
approach developed in Section 3 can be adapted to the present situation though V is not reflexive.
We expect to treat this limit case in a forthcoming work. (On these lines see also [4].)

4.2. Linear diffusion equations with nonlinear Neumann boundary conditions

Consider the equation
d X t − ∆X t dt −

1
2

b(t, ξ) · ∇ξ


b(t, ξ) · ∇ξ X t


dt

= b(t, ξ) · ∇ξ X t dβ(t) in [0, T ] × O
∂

∂ν
X t + ζ(t, X t ) ∋ 0 on [0, T ] × ∂O

X0 = x in O

(4.11)

where ζ(t, r) = ∂ j0(t, r), ∀t ∈ (0, T ), r ∈ R and j0(t, ·) is a lower semicontinuous convex
function on R such that

γ1 + α1|y|
2

≤ j0(t, y) ≤ γ2 + α2|y|
2, ∀y ∈ R, t ∈ (0, T )

and αi > 0, γi ∈ R, i = 1, 2.
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Assume also that (4.3) holds and that b = b(t, ·) satisfies conditions (4.5)–(4.7). Then we may
apply Theorems 2.1–2.3, where V = H1(O), H = L2(O) and

ψ(t, y) =
1
2


O

|∇ y|
2 dξ +


∂O

j0(t, y) dξ, ∀y ∈ V .

It follows so the existence of a solution X ∈ L2(0, T ; V )∩W 1,2([0, T ]; V ′) to (4.11) and also the
structural stability of (4.11) with respect to b. Problems of this type arise in thermostat control.
In this case

ζ(t, y) =


α1(t)H(y)+ α2(t)H(−y)


y if y ≠ 0

[−α2(t), α1(t)] if y = 0

where αi > 0, ∀t ∈ [0, T [ and H is the Heaviside function.

4.3. Nonlinear stochastic porous media equations

Consider the equation
d X t − ∆ξφ(t, X t ) dt −

1
2

b(t, ξ) · ∇ξ (−∆)−1(b(t, ξ) · ∇ξ ((−∆)−1 X t )) dt

= b(t, ξ) · ∇ξ (−∆)−1 X t dβ(t), in (0, T )× O
X0 = x in O
X t = 0 on (0,∞)× ∂O.

(4.12)

Here O ⊂ Rd , d = 1, 2, 3 is a bounded open domain and (−∆)−1 is the inverse of the operator
A0 = −∆, D(A0) = H1

0 (O) ∩ H2(O). The function φ: (0, T )× Rd
→ R is assumed to satisfy

the following conditions.

(k) φ = φ(t, r) is monotonically decreasing in r , measurable in t and its potential

j (t, r) =

 r

0
φ(t, τ ) dτ, t ∈ (0, T )

satisfies the growth conditions

γ1 + α1 |r |
p1 ≤ j (t, r) ≤ γ2 + α2 |r |

p2 , ∀r ∈ R, ω ∈ Ω , t ∈ [0, T ] (4.13)

j (t,−r) ≤ c1 j (t, r)+ c2, ∀r ∈ R, t ∈ (0, T ) (4.14)

where 6
5 ≤ p1 ≤ p2 < ∞ if d = 3, 1 < p1 ≤ p2 < ∞ if d = 1, 2.

Then Eq. (4.12) can be written as (1.1), where H = H−1(O), V = L p1(O) and A(t) = ∂ψ(t, ·)
where ψ(t, ·): H → R̄ is defined by

ψ(t, y) =



O

j (t, y) dξ if y ∈ H−1(O), j (t, y) ∈ L1(O)

+∞ otherwise,

and B(t), t ∈ R+ is defined by

B(t)u = b(t, ξ) · ∇((−∆)−1u), u ∈ V . (4.15)

The space V ′ is in this case the dual of V = L p1(O) with H−1(O) as the pivot space. By the
Sobolev embedding theorem it is easily seen that since p1 ≥

6
5 we have V ⊂ H−1(O). The
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scalar product on H is defined by

⟨u, v⟩H−1(O) = u(z), z = (−∆)−1v.

It is well known that A(t)X = −∆ξφ(t, X) is indeed the subdifferential of ψ(t, ·) in H−1(O)
(see e.g., [5, p. 68]).

As regards b: [0, T ] × Ō → Rd we assume that conditions (4.5)–(4.7) hold.

We note that for each t ∈ [0, T ], B(t) ∈ L(V, H−1(O)) is densely defined and skew-symmetric
on H−1(O) = H . Indeed we have

⟨B(t)u, u⟩ =


O

div(b(t, ξ)(−∆)−1u) · (−∆)−1u dξ

=
1
2


O

b(t, ξ) · ∇|(−∆)−1u(ξ)|2 dξ = 0,

because divξb = 0 and b(t, ξ) · ν(ξ) = 0 on ∂O .

Moreover, for each t ∈ [0, T ], B(t) is m-dissipative on H−1(O). Indeed for each f ∈ H−1(O),
the equation u − B(t)u = f can be equivalently written as v = (−∆)−1u, where

−∆v − b(t, ·) · ∇v = f in O,

v = 0 on ∂O.

By the Lax–Milgram lemma the latter has a unique solution v ∈ H1
0 (O) and therefore

u ∈ H−1(O) as claimed. Moreover, if f ∈ L p1(O) and ∂O is of class C2 then by the
Agmon–Douglis–Nirenberg theorem v ∈ W 2,p1(O) ∩ W 1,p1

0 (O) and so u ∈ V .

Hence, B(t) generates a C0-group (es B(t))s∈R on H = H−1(O) which leaves V = L p1(O)
invariant.

Then we may apply Theorem 2.1 as well as the approximation Theorem 2.2 to the present
situation. We obtain the following.

Theorem 4.2. There is a unique solution X to (4.12) such that P-a.s. X ∈ L p1(0, T ; L p1(O)) ∩
L∞(0, T ; H−1(O)). Moreover, the solution X is a limit of approximating solutions when the
Brownian motion β is approximated by a sequence of smooth processes.

Moreover, if φn → φ and φ∗
n → φ∗, bn → b we find by Theorem 2.2 that the corresponding

solutions Xn to (4.12) are convergent to solution X to (4.11). The details are omitted.
The existence for the stochastic porous media equation of the formd X t − ∆ξφ(X t ) dt = σ(X t ) dW (t) in (0, T )× O

X0 = x in O
X t = 0 on (0, T )× ∂O,

when Wt is a Wiener process of the form

W (t, ξ) =

∞
k=1

µk ek(ξ) βk(t)

with


∞

k=1 µ
2
k λ

2
k < ∞, ∆ek = −λk ek in O , ek ∈ H1

0 (O), and σ = σ(x) is a linear
continuous operator, was studied in [7–9,11]. Note that in this case the noise term can also be
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written in our form with commuting and, contrary to our paper, bounded operators B j . Here the
multiplicative term σ(X t ) = b · ∇(−∆)−1 X t is however discontinuous on the space H−1(O)
and so Theorem 4.2 is from this point of view different and in this sense more general.

Eq. (4.12) models diffusion processes and the motion of fluid flows in porous media.

Remark 4.2. Theorem 2.4 and Remark 2.1 are also valid in the current setup.
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Appendix. Convex functions

We summarize in this paragraph some facts about convex functions, which we have used in
our paper.

Given a convex and lower-semicontinuous function φ : Y → R̄ = (−∞,∞] we denote by
∂φ : Y → Y ′ (the dual space) the subdifferential of φ, i.e.

∂φ(y) :=

z ∈ Y ′

: φ(y)− φ(u) ≤ ⟨y − u, z⟩,∀u ∈ Y

. (A.1)

(Here ⟨·, ·⟩ is the duality pairing between Y and Y ′). The function φ∗
: Y ′

→ Y defined by

φ∗(z) = sup {⟨y, z⟩ − φ(y) : y ∈ Y } , (A.2)

is called the conjugate of φ. Similarly to φ it is convex lower semicontinuous function on Y ′.
Also we notice the following key conjugacy formulae (see e.g. [10, p. 89]). If y ∈ Y , and z ∈ Y ′

φ(y)+ φ∗(z) ≥ ⟨y, z⟩ (A.3)

φ(y)+ φ∗(z) = ⟨y, z⟩ iff z ∈ ∂φ(y). (A.4)

A vector x∗ is said to be a subgradient of a convex function φ at a point x if

φ(z) ≥ φ(x)+ ⟨x∗, z − x⟩. (A.5)

Moreover, straightforward calculations give

φ∗(x∗) = φ∗
y(x

∗)− ⟨y, x∗
⟩, (A.6)

whenever φ(x) = φy(x + y).
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[11] V. Barbu, M. Röckner, On a random scaled porous media equation, J. Differential Equations 251 (2011) 2494–2514.
[12] H. Brezis, I. Ekeland, Un principe variationnel associé à certaines équations paraboliques, Le cas indépendant du
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[14] Z. Brzeźniak, M. Capiński, F. Flandoli, A convergence result for stochastic partial differential equations, Stochastics

24 (4) (1988) 423–445.
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