期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS | 卷:130 |
Invariance principles for random walks in cones | |
Article | |
Duraj, Jetlir1  Wachtel, Vitali2  | |
[1] Harvard Univ, Dept Econ, Cambridge, MA 02138 USA | |
[2] Univ Augsburg, Inst Math, D-86135 Augsburg, Germany | |
关键词: Random walk; Exit time; Invariance principle; | |
DOI : 10.1016/j.spa.2019.11.004 | |
来源: Elsevier | |
【 摘 要 】
We prove invariance principles for a multidimensional random walk conditioned to stay in a cone. Our first result concerns convergence towards the Brownian meander in the cone. Furthermore, we prove functional convergence of h-transformed random walk to the corresponding h-transform of the Brownian motion. Finally, we prove an invariance principle for bridges of a random walk in a cone. (C) 2019 Published by Elsevier B.V.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_spa_2019_11_004.pdf | 361KB | download |