期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:129
Central limit theorems for biased randomly trapped random walks on Z
Article
Bowditch, Adam1 
[1] Univ Warwick, Warwick, England
关键词: Random walk;    Random environment;    Randomly trapped;    Galton-Watson tree;    Annealed;    Quenched;    Functional central limit theorem;    Invariance principle;   
DOI  :  10.1016/j.spa.2018.03.017
来源: Elsevier
PDF
【 摘 要 】

We prove CLTs for biased randomly trapped random walks in one dimension. By considering a sequence of regeneration times, we will establish an annealed invariance principle under a second moment condition on the trapping times. In the quenched setting, an environment dependent centring is necessary to achieve a central limit theorem. We determine a suitable expression for this centring. As our main motivation, we apply these results to biased walks on subcritical Galton-Watson trees conditioned to survive for a range of bias values. (C) 2018 The Author. Published by Elsevier B.V.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2018_03_017.pdf 616KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次