STOCHASTIC PROCESSES AND THEIR APPLICATIONS | 卷:129 |
An integral functional driven by fractional Brownian motion | |
Article | |
Sun, Xichao1  Yan, Litan2  Yu, Xianye3  | |
[1] Bengbu Univ, Coll Sci, Dept Math, 1866 Caoshan Rd, Bengbu 233030, Peoples R China | |
[2] Donghua Univ, Coll Sci, Dept Math, 2999 North Renmin Rd, Shanghai 201620, Peoples R China | |
[3] Sun Yat Sen Univ, Sch Math, 135 Xingang Xi Rd, Guangzhou 510275, Guangdong, Peoples R China | |
关键词: Fractional Brownian motion; Malliavin calculus; Local time; Fractional Ito formula; Cauchy's principal value; | |
DOI : 10.1016/j.spa.2018.07.004 | |
来源: Elsevier | |
【 摘 要 】
Let B-H be a fractional Brownian motion with Hurst index 0 < H < 1 and the weighted local time L-H (., t). In this paper, we consider the integral process C-t(H) (a) := lim (epsilon down arrow 0) integral(t)(0) 1 ({vertical bar BsH -a vertical bar >=epsilon}) 2Hs(2H-1)/B-s(H )- a ds -HLH (., t)(a), t >= 0 in L-2 (Omega) with a is an element of R, where H denotes the Hilbert transform. We show that the Skorohod integral integral(.)(0) log vertical bar B-s(H) - a vertical bar d B-s(H) exists in L-2 (Omega) and the fractional Yamada formula (B-t(H) - a) log vertical bar B-t(H) - a vertical bar - B-t(H) + a log vertical bar a vertical bar - integral(t)(0) log vertical bar B-s(H) - a vertical bar d B-s(H) = 1/2 C-t(H) (a) holds for all a is an element of R, t >= 0. Moreover, we introduce the next occupation type formula: integral(R) C-t(H) (a)g(a)da = 2H integral(t)(0) (Hg)(B-s(H))s(2H-1)ds for all continuous functions g with compact support. (C) 2018 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_spa_2018_07_004.pdf | 495KB | download |