期刊论文详细信息
BMC Plant Biology
Candidate genes associated with bud dormancy release in blackcurrant (Ribes nigrumL.)
Research Article
Christine A Hackett1  Linda Cardle2  Sandra Gordon2  Linzi Jorgensen2  Peter E Hedley2  Jenny A Morris2  Rex Brennan2  Joanne R Russell2 
[1] BioSS, Invergowrie, Dundee, UK;Programme of Genetics, SCRI, Invergowrie, Dundee, UK;
关键词: Quantitative Trait Locus;    Gene Ontology;    Gene Expression Profile;    Dormancy Release;    Leafy Spurge;   
DOI  :  10.1186/1471-2229-10-202
 received in 2010-03-12, accepted in 2010-09-14,  发布年份 2010
来源: Springer
PDF
【 摘 要 】

BackgroundThe detrimental effects of mild winter temperatures on the consistency of cropping of blackcurrant (Ribes nigrum L.) in parts of Europe have led to increasing interest in the genetic control of dormancy release in this species. This study examined patterns of gene expression in leaf buds of blackcurrant to identify key differential changes in these profiles around the time of budbreak.ResultsUsing leaf bud tissue of blackcurrant, a cDNA library was generated as a source of blackcurrant ESTs for construction of a custom microarray, which was used to identify differential gene expression during dormancy release. Gene activity was lowest in early stages of dormancy, increasing to reach a maximum around the time of budbreak. Genes with significantly changing expression profiles were clustered and evidence is provided for the transient activity of genes previously associated with dormancy processes in other species. Expression profiling identified candidate genes which were mapped onto a blackcurrant genetic linkage map containing budbreak-related QTL. Three genes, which putatively encode calmodulin-binding protein, beta tubulin and acetyl CoA carboxylase respectively, were found to co-localise with budbreak QTL.ConclusionsThis study provides insight into the genetic control of dormancy transition in blackcurrant, identifying key changes in gene expression around budbreak. Genetic mapping of ESTs enabled the identification of genes which co-localise with previously-characterised blackcurrant QTL, and it is concluded that these genes have probable roles in release of dormancy and can therefore provide a basis for the development of genetic markers for future breeding deployment.

【 授权许可】

CC BY   
© Hedley et al; licensee BioMed Central Ltd. 2010

【 预 览 】
附件列表
Files Size Format View
RO202311109681402ZK.pdf 1471KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  文献评价指标  
  下载次数:0次 浏览次数:0次