期刊论文详细信息
BMC Genomics
Variability of gene expression profiles in human blood and lymphoblastoid cell lines
Research Article
Helen E Lockstone1  Jennifer M Taylor1  Josine L Min2  Cecilia M Lindgren2  Krina T Zondervan2  Fredrik H Pettersson2  Tim Watts3  Mark I McCarthy4  Amy Barrett4  Maxine Allen4 
[1] Bioinformatics Core, Wellcome Trust Centre for Human Genetics, Oxford, UK;Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, Oxford, UK;Genomics Laboratory, Wellcome Trust Centre for Human Genetics, Oxford, UK;Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK;
关键词: Gene Ontology;    Gene Expression Profile;    False Discovery Rate;    Partial Little Square Discriminant Analysis;    Gene Expression Measurement;   
DOI  :  10.1186/1471-2164-11-96
 received in 2009-08-20, accepted in 2010-02-08,  发布年份 2010
来源: Springer
PDF
【 摘 要 】

BackgroundReadily accessible samples such as peripheral blood or cell lines are increasingly being used in large cohorts to characterise gene expression differences between a patient group and healthy controls. However, cell and RNA isolation procedures and the variety of cell types that make up whole blood can affect gene expression measurements. We therefore systematically investigated global gene expression profiles in peripheral blood from six individuals collected during two visits by comparing five of the following cell and RNA isolation methods: whole blood (PAXgene), peripheral blood mononuclear cells (PBMCs), lymphoblastoid cell lines (LCLs), CD19 and CD20 specific B-cell subsets.ResultsGene expression measurements were clearly discriminated by isolation method although the reproducibility was high for all methods (range ρ = 0.90-1.00). The PAXgene samples showed a decrease in the number of expressed genes (P < 1*10-16) with higher variability (P < 1*10-16) compared to the other methods. Differentially expressed probes between PAXgene and PBMCs were correlated with the number of monocytes, lymphocytes, neutrophils or erythrocytes. The correlations (ρ = 0.83; ρ = 0.79) of the expression levels of detected probes between LCLs and B-cell subsets were much lower compared to the two B-cell isolation methods (ρ = 0.98). Gene ontology analysis of detected genes showed that genes involved in inflammatory responses are enriched in B-cells CD19 and CD20 whereas genes involved in alcohol metabolic process and the cell cycle were enriched in LCLs.ConclusionGene expression profiles in blood-based samples are strongly dependent on the predominant constituent cell type(s) and RNA isolation method. It is crucial to understand the differences and variability of gene expression measurements between cell and RNA isolation procedures, and their relevance to disease processes, before application in large clinical studies.

【 授权许可】

CC BY   
© Min et al; licensee BioMed Central Ltd. 2010

【 预 览 】
附件列表
Files Size Format View
RO202311098949881ZK.pdf 2523KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  文献评价指标  
  下载次数:1次 浏览次数:0次