期刊论文详细信息
BMC Medical Imaging
Improved R2* liver iron concentration assessment using a novel fuzzy c-mean clustering scheme
Technical Advance
Rungroj Krittayaphong1  Pairash Saiviroonporn2  Vip Viprakasit3 
[1] Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand;Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand;Haematology/Oncology Division, Department of Pediatrics and Thalassemia Center, Mahidol University, Bangkok, Thailand;
关键词: FCM;    Liver iron overload;    Liver R2* measurement;    Liver segmentation;    Thalassemia;   
DOI  :  10.1186/s12880-015-0097-5
 received in 2015-04-16, accepted in 2015-10-29,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundIn thalassemia patients, R2* liver iron concentration (LIC) measurement is a common clinical tool for assessing iron overload and for determining necessary chelator dose and evaluating its efficacy. Despite the importance of accurate LIC measurement, existing methods suffer from LIC variability, especially at the severe iron overload range due to inclusion of vessel parts in LIC calculation. In this study, we build upon previous Fuzzy C-Mean (FCM) clustering work to formulate a scheme with superior performance in segmenting vessel pixels from the parenchyma. Our method (MIX-FCM) combines our novel 2D-FCM with the existing 1D-FCM algorithm. This study further assessed possible optimal clustering parameters (OP scheme) and proposed a semi-automatic (SA) scheme for routine clinical application.MethodsSegmentation of liver parenchyma and vessels was performed on T2* images and their LIC maps in 196 studies from 147 thalassemia major patients. We used manual segmentation as the reference. 1D-FCM clustering was performed on the acquired image alone and 2D-FCM used both the acquired image and its LIC data. To execute the MIX-FCM method, the best outcome (OP-MIX-FCM) was selected from the aforementioned methods and was compared to the SA-MIX-FCM scheme. We used the percent value of the normalized interquartile range (nIQR) to its median to evaluate the variability of all methods.Results2D-FCM clustering is more effective than 1D-FCM clustering at the severe overload range only, but inferior for other ranges (where 1D-FCM provides suitable results). This complementary performance between the two methods allows MIX-FCM to improve results for all ranges. OP-MIX-FCM clustering error was 2.1 ± 2.3 %, compared with 10.3 ± 9.9 % and 7.0 ± 11.9 % from 1D- and 2D-FCM clustering, respectively. SA-MIX-FCM result was comparable to OP-MIX-FCM result, with both schemes showing ability to decrease overall nIQR by approximately 30 %.ConclusionOur proposed 2D-FCM algorithm is not as superior to 1D-FCM as hypothesized. In contrast, our MIX-FCM method benefits from the best of both methods to obtain the highest segmentation accuracy at all ranges. Moreover, segmentation accuracy of the practical scheme (SA-MIX-FCM) is comparable to segmentation accuracy of the reference scheme (OP-MIX-FCM). Finally, we confirmed that segmentation is crucial to improving LIC assessments, especially at the severe iron overload range.

【 授权许可】

CC BY   
© Saiviroonporn et al. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311109567280ZK.pdf 4519KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  文献评价指标  
  下载次数:1次 浏览次数:1次