期刊论文详细信息
BMC Bioinformatics
Fast and accurate branch lengths estimation for phylogenomic trees
Research Article
Celine Scornavacca1  Emmanuel J. P. Douzery2  Fabio Pardi3  Olivier Gascuel3  Manuel Binet4 
[1] Institut de Biologie Computationnelle, Montpellier, France;Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, France;Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, France;Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), CNRS, Université de Montpellier, Montpellier, France;Institut de Biologie Computationnelle, Montpellier, France;Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), CNRS, Université de Montpellier, Montpellier, France;Institut de Biologie Computationnelle, Montpellier, France;Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, France;
关键词: Phylogenomics;    Supertree;    Branch lengths;    Gene rates;    Distance-based;    Least-squares;   
DOI  :  10.1186/s12859-015-0821-8
 received in 2015-05-19, accepted in 2015-11-02,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundBranch lengths are an important attribute of phylogenetic trees, providing essential information for many studies in evolutionary biology. Yet, part of the current methodology to reconstruct a phylogeny from genomic information — namely supertree methods — focuses on the topology or structure of the phylogenetic tree, rather than the evolutionary divergences associated to it. Moreover, accurate methods to estimate branch lengths — typically based on probabilistic analysis of a concatenated alignment — are limited by large demands in memory and computing time, and may become impractical when the data sets are too large.ResultsHere, we present a novel phylogenomic distance-based method, named ERaBLE (Evolutionary Rates and Branch Length Estimation), to estimate the branch lengths of a given reference topology, and the relative evolutionary rates of the genes employed in the analysis. ERaBLE uses as input data a potentially very large collection of distance matrices, where each matrix is obtained from a different genomic region — either directly from its sequence alignment, or indirectly from a gene tree inferred from the alignment. Our experiments show that ERaBLE is very fast and fairly accurate when compared to other possible approaches for the same tasks. Specifically, it efficiently and accurately deals with large data sets, such as the OrthoMaM v8 database, composed of 6,953 exons from up to 40 mammals.ConclusionsERaBLE may be used as a complement to supertree methods — or it may provide an efficient alternative to maximum likelihood analysis of concatenated alignments — to estimate branch lengths from phylogenomic data sets.

【 授权许可】

CC BY   
© Binet et al. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311109131004ZK.pdf 3287KB PDF download
MediaObjects/12888_2023_5213_MOESM1_ESM.pdf 485KB PDF download
MediaObjects/12951_2022_1747_MOESM1_ESM.pdf 1907KB PDF download
12867_2016_60_Article_IEq2.gif 1KB Image download
Fig. 9 45KB Image download
Fig. 2 937KB Image download
Fig. 4 2368KB Image download
12867_2016_60_Article_IEq1.gif 2KB Image download
12936_2017_2014_Article_IEq78.gif 1KB Image download
12951_2015_155_Article_IEq4.gif 1KB Image download
Fig. 1 5136KB Image download
Fig. 6 1766KB Image download
Fig. 3 595KB Image download
Fig. 3 1801KB Image download
Fig. 4 183KB Image download
Fig. 7 372KB Image download
Fig. 1 206KB Image download
Fig. 1 2201KB Image download
12936_2017_2051_Article_IEq85.gif 1KB Image download
12936_2017_1932_Article_IEq15.gif 1KB Image download
12936_2017_2051_Article_IEq86.gif 1KB Image download
Fig. 5 598KB Image download
MediaObjects/41408_2023_928_MOESM1_ESM.docx 12KB Other download
Fig. 1 429KB Image download
MediaObjects/41408_2023_928_MOESM2_ESM.pdf 40KB PDF download
41512_2023_158_Article_IEq1.gif 1KB Image download
Fig. 7 1996KB Image download
41512_2023_158_Article_IEq2.gif 1KB Image download
Fig. 3 585KB Image download
Fig. 5 640KB Image download
MediaObjects/12894_2023_1313_MOESM4_ESM.xlsx 14KB Other download
12951_2017_323_Article_IEq1.gif 1KB Image download
Fig. 8 3631KB Image download
MediaObjects/13046_2023_2865_MOESM6_ESM.tif 2738KB Other download
41512_2023_158_Article_IEq9.gif 1KB Image download
12951_2015_155_Article_IEq6.gif 1KB Image download
Fig. 6 488KB Image download
Fig. 1 196KB Image download
Fig. 6 601KB Image download
Fig. 2 283KB Image download
Fig. 2 650KB Image download
Fig. 6 514KB Image download
Fig. 8 2130KB Image download
MediaObjects/12888_2023_5289_MOESM1_ESM.docx 690KB Other download
Fig. 1 224KB Image download
41512_2023_158_Article_IEq20.gif 1KB Image download
Fig. 1 439KB Image download
12951_2017_270_Article_IEq3.gif 1KB Image download
Fig. 2 786KB Image download
Fig. 2 422KB Image download
MediaObjects/13068_2023_2403_MOESM2_ESM.xls 1986KB Other download
41512_2023_158_Article_IEq26.gif 1KB Image download
Fig. 4 1825KB Image download
Fig. 3 313KB Image download
MediaObjects/13046_2023_2865_MOESM7_ESM.tif 1295KB Other download
Fig. 4 1482KB Image download
Fig. 1 395KB Image download
350KB Image download
Fig. 4 463KB Image download
Fig. 9 519KB Image download
Fig. 9 217KB Image download
MediaObjects/13046_2023_2853_MOESM2_ESM.pdf 2039KB PDF download
42004_2023_1025_Article_IEq7.gif 1KB Image download
Fig. 2 256KB Image download
40517_2023_273_Article_IEq2.gif 1KB Image download
Fig. 1 205KB Image download
Fig. 4 632KB Image download
MediaObjects/13046_2023_2865_MOESM12_ESM.jpg 421KB Other download
Fig. 8 80KB Image download
Fig. 4 718KB Image download
12951_2015_155_Article_IEq7.gif 1KB Image download
MediaObjects/13046_2023_2846_MOESM1_ESM.xlsx 18KB Other download
Fig. 9 69KB Image download
129KB Image download
Fig. 1 141KB Image download
Fig. 10 107KB Image download
Fig. 5 508KB Image download
Fig. 5 2497KB Image download
Fig. 3 318KB Image download
Fig. 2 119KB Image download
Fig. 7 354KB Image download
12864_2017_3527_Article_IEq9.gif 1KB Image download
Fig. 2 321KB Image download
MediaObjects/12902_2023_1474_MOESM1_ESM.docx 28KB Other download
MediaObjects/12888_2023_5278_MOESM1_ESM.docx 20KB Other download
MediaObjects/40249_2023_1146_MOESM2_ESM.png 8543KB Other download
MediaObjects/12888_2023_5278_MOESM2_ESM.docx 20KB Other download
12951_2015_155_Article_IEq9.gif 1KB Image download
MediaObjects/12888_2023_5278_MOESM3_ESM.docx 19KB Other download
Fig. 2 153KB Image download
12951_2015_155_Article_IEq12.gif 1KB Image download
12951_2015_155_Article_IEq13.gif 1KB Image download
12951_2015_155_Article_IEq14.gif 1KB Image download
Fig. 3 173KB Image download
12951_2015_155_Article_IEq16.gif 1KB Image download
1165KB Image download
12951_2015_155_Article_IEq18.gif 1KB Image download
12951_2015_155_Article_IEq19.gif 1KB Image download
12951_2015_155_Article_IEq20.gif 1KB Image download
12951_2015_155_Article_IEq21.gif 1KB Image download
12951_2015_155_Article_IEq22.gif 1KB Image download
MediaObjects/13046_2023_2846_MOESM6_ESM.pdf 313KB PDF download
12951_2015_155_Article_IEq23.gif 1KB Image download
Fig. 1 238KB Image download
12951_2017_315_Article_IEq1.gif 1KB Image download
Fig. 1 1909KB Image download
Fig. 4 161KB Image download
MediaObjects/13046_2023_2846_MOESM8_ESM.pdf 161KB PDF download
Fig. 6 83KB Image download
12951_2015_111_Article_IEq1.gif 1KB Image download
Fig. 1 2753KB Image download
Table 2 61KB Table download
MediaObjects/13046_2023_2846_MOESM10_ESM.pdf 123KB PDF download
Fig. 3 393KB Image download
12951_2017_270_Article_IEq5.gif 1KB Image download
Fig. 2 804KB Image download
MediaObjects/12936_2023_4728_MOESM6_ESM.docx 78KB Other download
12951_2015_155_Article_IEq24.gif 1KB Image download
【 图 表 】

12951_2015_155_Article_IEq24.gif

Fig. 2

12951_2017_270_Article_IEq5.gif

Fig. 3

Fig. 1

12951_2015_111_Article_IEq1.gif

Fig. 6

Fig. 4

Fig. 1

12951_2017_315_Article_IEq1.gif

Fig. 1

12951_2015_155_Article_IEq23.gif

12951_2015_155_Article_IEq22.gif

12951_2015_155_Article_IEq21.gif

12951_2015_155_Article_IEq20.gif

12951_2015_155_Article_IEq19.gif

12951_2015_155_Article_IEq18.gif

12951_2015_155_Article_IEq16.gif

Fig. 3

12951_2015_155_Article_IEq14.gif

12951_2015_155_Article_IEq13.gif

12951_2015_155_Article_IEq12.gif

Fig. 2

12951_2015_155_Article_IEq9.gif

Fig. 2

12864_2017_3527_Article_IEq9.gif

Fig. 7

Fig. 2

Fig. 3

Fig. 5

Fig. 5

Fig. 10

Fig. 1

Fig. 9

12951_2015_155_Article_IEq7.gif

Fig. 4

Fig. 8

Fig. 4

Fig. 1

40517_2023_273_Article_IEq2.gif

Fig. 2

42004_2023_1025_Article_IEq7.gif

Fig. 9

Fig. 9

Fig. 4

Fig. 1

Fig. 4

Fig. 3

Fig. 4

41512_2023_158_Article_IEq26.gif

Fig. 2

Fig. 2

12951_2017_270_Article_IEq3.gif

Fig. 1

41512_2023_158_Article_IEq20.gif

Fig. 1

Fig. 8

Fig. 6

Fig. 2

Fig. 2

Fig. 6

Fig. 1

Fig. 6

12951_2015_155_Article_IEq6.gif

41512_2023_158_Article_IEq9.gif

Fig. 8

12951_2017_323_Article_IEq1.gif

Fig. 5

Fig. 3

41512_2023_158_Article_IEq2.gif

Fig. 7

41512_2023_158_Article_IEq1.gif

Fig. 1

Fig. 5

12936_2017_2051_Article_IEq86.gif

12936_2017_1932_Article_IEq15.gif

12936_2017_2051_Article_IEq85.gif

Fig. 1

Fig. 1

Fig. 7

Fig. 4

Fig. 3

Fig. 3

Fig. 6

Fig. 1

12951_2015_155_Article_IEq4.gif

12936_2017_2014_Article_IEq78.gif

12867_2016_60_Article_IEq1.gif

Fig. 4

Fig. 2

Fig. 9

12867_2016_60_Article_IEq2.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  文献评价指标  
  下载次数:6次 浏览次数:3次