期刊论文详细信息
Diagnostic Pathology
Artificial intelligence in diagnostic pathology
Review
Saba Shafi1  Anil V. Parwani1 
[1] Department of Pathology, The Ohio State University Wexner Medical Center, E409 Doan Hall, 410 West 10th Ave, 43210, Columbus, OH, USA;
关键词: Artificial intelligence;    Pathology;    Future;    Algorithms;   
DOI  :  10.1186/s13000-023-01375-z
 received in 2023-06-21, accepted in 2023-07-21,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Digital pathology (DP) is being increasingly employed in cancer diagnostics, providing additional tools for faster, higher-quality, accurate diagnosis. The practice of diagnostic pathology has gone through a staggering transformation wherein new tools such as digital imaging, advanced artificial intelligence (AI) algorithms, and computer-aided diagnostic techniques are being used for assisting, augmenting and empowering the computational histopathology and AI-enabled diagnostics. This is paving the way for advancement in precision medicine in cancer. Automated whole slide imaging (WSI) scanners are now rendering diagnostic quality, high-resolution images of entire glass slides and combining these images with innovative digital pathology tools is making it possible to integrate imaging into all aspects of pathology reporting including anatomical, clinical, and molecular pathology. The recent approvals of WSI scanners for primary diagnosis by the FDA as well as the approval of prostate AI algorithm has paved the way for starting to incorporate this exciting technology for use in primary diagnosis. AI tools can provide a unique platform for innovations and advances in anatomical and clinical pathology workflows. In this review, we describe the milestones and landmark trials in the use of AI in clinical pathology with emphasis on future directions.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202311108421805ZK.pdf 1539KB PDF download
12936_2017_1963_Article_IEq15.gif 1KB Image download
Fig. 3 474KB Image download
Fig. 4 106KB Image download
【 图 表 】

Fig. 4

Fig. 3

12936_2017_1963_Article_IEq15.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  • [93]
  • [94]
  • [95]
  • [96]
  • [97]
  • [98]
  • [99]
  • [100]
  • [101]
  • [102]
  • [103]
  • [104]
  • [105]
  • [106]
  • [107]
  • [108]
  • [109]
  • [110]
  • [111]
  • [112]
  • [113]
  • [114]
  • [115]
  • [116]
  • [117]
  • [118]
  • [119]
  • [120]
  • [121]
  • [122]
  • [123]
  • [124]
  • [125]
  • [126]
  • [127]
  • [128]
  • [129]
  • [130]
  文献评价指标  
  下载次数:7次 浏览次数:0次