| BMC Genomics | |
| Diversity and evolution of mariner-like elements in aphid genomes | |
| Research Article | |
| Imen Kharrat1  Maha Mezghani-Khemakhem1  Mohamed Makni1  Pierre Capy2  Jacques-Deric Rouault2  Jonathan Filée2  Maryem Bouallègue3  | |
| [1] Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie;Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France;Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France;Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie; | |
| 关键词: Aphids; Comparative genomics; Tc1-mariner; Transposable elements; MITEs; Molecular evolution; | |
| DOI : 10.1186/s12864-017-3856-6 | |
| received in 2017-01-04, accepted in 2017-06-09, 发布年份 2017 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundAlthough transposons have been identified in almost all organisms, genome-wide information on mariner elements in Aphididae remains unknown. Genomes of Acyrthosiphon pisum, Diuraphis noxia and Myzus persicae belonging to the Macrosiphini tribe, actually available in databases, have been investigated.ResultsA total of 22 lineages were identified. Classification and phylogenetic analysis indicated that they were subdivided into three monophyletic groups, each of them containing at least one putative complete sequence, and several non-autonomous sublineages corresponding to Miniature Inverted-Repeat Transposable Elements (MITE), probably generated by internal deletions. A high proportion of truncated and dead copies was also detected. The three clusters can be defined from their catalytic site: (i) mariner DD34D, including three subgroups of the irritans subfamily (Macrosiphinimar, Batmar-like elements and Dnomar-like elements); (ii) rosa DD41D, found in A. pisum and D. noxia; (iii) a new clade which differs from rosa through long TIRs and thus designated LTIR-like elements. Based on its catalytic domain, this new clade is subdivided into DD40D and DD41D subgroups. Compared to other Tc1/mariner superfamily sequences, rosa DD41D and LTIR DD40-41D seem more related to maT DD37D family.ConclusionOverall, our results reveal three clades belonging to the irritans subfamily, rosa and new LTIR-like elements. Data on structure and specific distribution of these transposable elements in the Macrosiphini tribe contribute to the understanding of their evolutionary history and to that of their hosts.
【 授权许可】
CC BY
© The Author(s). 2017
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311108294569ZK.pdf | 1679KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
PDF