期刊论文详细信息
BMC Genomics
Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus
Aurélie Hua-Van1  Elgion Loreto2  Pierre Capy1  Gabriel Luz Wallau1 
[1] Université Paris-Sud, Orsay, France;Departamento de Biologia, Universidade Federal de Santa Maria, Santa Maria, Brasil
关键词: Deletion rate;    MITEs;    Transposable elements;    Tc1-mariner;    Comparative genomics;    Drosophila;   
Others  :  1141186
DOI  :  10.1186/1471-2164-15-727
 received in 2014-02-11, accepted in 2014-08-01,  发布年份 2014
PDF
【 摘 要 】

Background

The mariner family of transposable elements is one of the most widespread in the Metazoa. It is subdivided into several subfamilies that do not mirror the phylogeny of these species, suggesting an ancient diversification. Previous hybridization and PCR studies allowed a partial survey of mariner diversity in the Metazoa. In this work, we used a comparative genomics approach to access the genus-wide diversity and evolution of mariner transposable elements in twenty Drosophila sequenced genomes.

Results

We identified 36 different mariner lineages belonging to six distinct subfamilies, including a subfamily not described previously. Wide variation in lineage abundance and copy number were observed among species and among mariner lineages, suggesting continuous turn-over. Most mariner lineages are inactive and contain a high proportion of damaged copies. We showed that, in addition to substitutions that rapidly inactivate copies, internal deletion is a major mechanism contributing to element decay and the generation of non-autonomous sublineages. Hence, 23% of copies correspond to several Miniature Inverted-repeat Transposable Elements (MITE) sublineages, the first ever described in Drosophila for mariner. In the most successful MITEs, internal deletion is often associated with internal rearrangement, which sheds light on the process of MITE origin. The estimation of the transposition rates over time revealed that all lineages followed a similar progression consisting of a rapid amplification burst followed by a rapid decrease in transposition. We detected some instances of multiple or ongoing transposition bursts. Different amplification times were observed for mariner lineages shared by different species, a finding best explained by either horizontal transmission or a reactivation process. Different lineages within one species have also amplified at different times, corresponding to successive invasions. Finally, we detected a preference for insertion into short TA-rich regions, which appears to be specific to some subfamilies.

Conclusions

This analysis is the first comprehensive survey of this family of transposable elements at a genus scale. It provides precise measures of the different evolutionary processes that were hypothesized previously for this family based on PCR data analysis. mariner lineages were observed at almost all “life cycle” stages: recent amplification, subsequent decay and potential (re)-invasion or invasion of genomes.

【 授权许可】

   
2014 Wallau et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150326024538930.pdf 2256KB PDF download
Figure 7. 50KB Image download
Figure 6. 129KB Image download
Figure 5. 47KB Image download
Figure 4. 68KB Image download
Figure 3. 43KB Image download
Figure 4. 82KB Image download
Figure 1. 154KB Image download
【 图 表 】

Figure 1.

Figure 4.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Jacobson JW, Medhora MM, Hartl DL: Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci U S A 1986, 83:8684-8688.
  • [2]Robertson HM: The mariner transposable element is widespread in insects. Nature 1993, 362:241-245.
  • [3]Doak TG, Doerder FP, Jahn CL, Herrick G: A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci U S A 1994, 91:942-946.
  • [4]Brillet B, Yves B, Corinne A-G: Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. Genetica 2007, 130(2):105-120.
  • [5]Robertson HM, MacLeod EG: Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol 1993, 2:125-139.
  • [6]Bigot Y, Hamelin MH, Capy P, Periquet G: Mariner-like elements in hymenopteran species: insertion site and distribution. Proc Natl Acad Sci U S A 1994, 91:3408-3412.
  • [7]Robertson HM: The Tc1-mariner superfamily of transposons in animals. J Insect Physiol 1995, 41:99-105.
  • [8]Garza D, Medhora M, Koga A, Hartl DL: Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics 1991, 128:303-310.
  • [9]Medhora M, Maruyama K, Hartl DL: Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics 1991, 128:311-318.
  • [10]Casse N, Bui QT, Nicolas V, Renault S, Bigot Y, Laulier M: Species sympatry and horizontal transfers of Mariner transposons in marine crustacean genomes. Mol Phylogenet Evol 2006, 40:609-619.
  • [11]Rouault JD, Casse N, Chenais B, Hua-Van A, Filee J, Capy P: Automatic classification within families of transposable elements: application to the mariner Family. Gene 2009, 448:227-232.
  • [12]Robertson HM, Asplund ML: Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect Biochem Mol Biol 1996, 26:945-954.
  • [13]Lampe DJ, Walden KK, Robertson HM: Loss of transposase-DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. Mol Biol Evol 2001, 18:954-961.
  • [14]Witherspoon DJ, Robertson HM: Neutral evolution of ten types of mariner transposons in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae. J Mol Evol 2003, 56:751-769.
  • [15]Lorite P, Maside X, Sanllorente O, Torres MI, Periquet G, Palomeque T: The ant genomes have been invaded by several types of mariner transposable elements. Naturwissenschaften 2012, 99:1007-1020.
  • [16]Lohe AR, Moriyama EN, Lidholm DA, Hartl DL: Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol 1995, 12:62-72.
  • [17]Hartl DL, Lohe AR, Lozovskaya ER: Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu Rev Genet 1997, 31:337-358.
  • [18]Le Rouzic A, Capy P: The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics 2005, 169:1033-1043.
  • [19]Le Rouzic A, Boutin TS, Capy P: Long-term evolution of transposable elements. Proc Natl Acad Sci U S A 2007, 104:19375-19380.
  • [20]Silva JC, Kidwell MG: Horizontal transfer and selection in the evolution of P elements. Mol Biol Evol 2000, 17:1542-1557.
  • [21]Lampe DJ, Witherspoon DJ, Soto-Adames FN, Robertson HM: Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Mol Biol Evol 2003, 20:554-562.
  • [22]Augé-Gouillou C, Bigot Y, Periquet G: Mariner-like sequences are present in the genome of the fruitfly, Drosophila melanogaster. J Evol Biol 1999, 12:742-745.
  • [23]Brunet F, Godin F, David JR, Capy P: The mariner transposable element in the Drosophilidae family. Heredity 1994, 73(Pt 4):377-385.
  • [24]Capy P, Langin T, Bigot Y, Brunet F, Daboussi MJ, Periquet G, David JR, Hartl DL: Horizontal transmission versus ancient origin: mariner in the witness box. Genetica 1994, 93:161-170.
  • [25]Brunet F, Godin F, Bazin C, Capy P: Phylogenetic analysis of Mos1-like transposable elements in the Drosophilidae. J Mol Evol 1999, 49:760-768.
  • [26]Brunet F, Giraud T, Godin F, Capy P: Do deletions of mos1-like elements occur randomly in the drosophilidae family? J Mol Evol 2002, 54:227-234.
  • [27]Wallau GL, Hua-Van A, Capy P, Loreto EL: The evolutionary history of mariner-like elements in Neotropical drosophilids. Genetica 2011, 139:327-338.
  • [28]Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W: Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007, 450:203-218.
  • [29]Piano , Cherbas 2008. http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/modENCODE_ComparativeGenomics_WhitePaper.pdf webcite
  • [30]Kumar S, Hedges SB: TimeTree2: species divergence times on the iPhone. Bioinformatics 2011, 27:2023-2024.
  • [31]Bui QT, Casse N, Leignel V, Nicolas V, Chenais B: Widespread occurence of mariner transposons in coastal crabs. Mol Phylogenet Evol 2008, 47:1181-1189.
  • [32]Kuang H, Padmanabha C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B: Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res 2009, 19(1):42-56.
  • [33]Wessler S: Transposable elements and the evolution of gene expression. Symp Soc Exp Biol 1998, 51:115-122.
  • [34]Le Rouzic A, Payen T, Hua-Van A: Reconstructing the evolutionary history of transposable elements. Genome Biol Evol 2013, 5:77-86.
  • [35]Le Rouzic A, Capy P: Population genetics models of competition between transposable element subfamilies. Genetics 2006, 174:785-793.
  • [36]Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, et al.: The dynamic genome of Hydra. Nature 2010, 2010(464):592-596.
  • [37]Petrov DA, Hartl DL: High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol 1998, 15:293-302.
  • [38]Petrov DA: DNA loss and evolution of genome size in Drosophila. Genetica 2002, 115:81-91.
  • [39]Wessler SR, Bureau TE, White SE: LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 1995, 5:814-821.
  • [40]De Freitas OM, Silva LE: The hobo-related elements in the melanogaster species group. Genet Res 2008, 90:243-252.
  • [41]Dias ES, Carareto CM: msechBari, a new MITE-like element in Drosophila sechellia related to the Bari transposon. Genet Res (Camb) 2011, 93:381-385.
  • [42]Depra M, Ludwig A, Valente VL, Loreto EL: Mar, a MITE family of hAT transposons in Drosophila. Mob DNA 2012, 3:13.
  • [43]Miskey C, Papp B, Mates L, Sinzelle L, Keller H, Izsvak Z, Ivics Z: The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends. Mol Cell Biol 2007, 27:4589-4600.
  • [44]Lohe AR, Hartl DL: Reduced germline mobility of a mariner vector containing exogenous DNA: effect of size or site? Genetics 1996, 143:1299-1306.
  • [45]Sinzelle L, Jegot G, Brillet B, Rouleux-Bonnin F, Bigot Y, Auge-Gouillou C: Factors acting on Mos1 transposition efficiency. BMC Mol Biol 2008, 9:106.
  • [46]Rezsohazy R, van Luenen HG, Durbin RM, Plasterk RH: Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Res 1997, 1997(25):4048-4054.
  • [47]Feschotte C, Zhang X, Wessler SR: Miniature inverted-repeat transposable elements and their relationship to established DNA transposons. In Mobile DNA II. Edited by Craig NL, Craigie R, Gellert M, Lambowitz AM. Washington DC.: ASM Press; 2002:1147-1158.
  • [48]Jiang N, Feschotte C, Zhang X, Wessler SR: Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 2004, 7:115-119.
  • [49]Yang G, Nagel DH, Feschotte C, Hancock CN, Wessler SR: Tuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE. Science 2009, 325:1391-1394.
  • [50]Tu Z: Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 1997, 94:7475-7480.
  • [51]Rubin E, Levy AA: Abortive gap repair: underlying mechanism for Ds element formation. Mol Cell Biol 1997, 17:6294-6302.
  • [52]Le Rouzic A, Dupas S, Capy P: Genome ecosystem and transposable elements species. Gene 2007, 2007(390):214-220.
  • [53]Robertson HM, Soto-Adames FN, Walden KK, Avancini RMP, Lampe DJ: The mariner Transposons of Animals: Horizontally Jumping Genes. In Horizontal Gene Transfer Edited by Syvanen M, Kado CI. 2002, 173-185.
  • [54]Loreto EL, Carareto CM, Capy P: Revisiting horizontal transfer of transposable elements in Drosophila. Heredity (Edinb) 2008, 100:545-554.
  • [55]Wallau GL, Ortiz MF, Loreto EL: Horizontal transposon transfer in eukarya: detection, bias, and perspectives. Genome Biol Evol 2012, 4:689-699.
  • [56]Doolittle WF, Sapienza C: Selfish genes, the phenotype paradigm and genome evolution. Nature 1980, 284:601-603.
  • [57]Orgel LE, Crick FH: Selfish DNA: the ultimate parasite. Nature 1980, 284:604-607.
  • [58]Charlesworth B, Sniegowski P, Stephan W: The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 1994, 371:215-220.
  • [59]Nuzhdin SV: Sure facts, speculations, and open questions about the evolution of transposable element copy number. Genetica 1999, 107:129-137.
  • [60]Slotkin RK, Martienssen R: Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 2007, 8:272-285.
  • [61]Obbard DJ, Gordon KH, Buck AH, Jiggins FM: The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 2009, 364:99-115.
  • [62]Brookfield JF: The ecology of the genome - mobile DNA elements and their hosts. Nat Rev Genet 2005, 6:128-136.
  • [63]Venner S, Feschotte C, Biemont C: Dynamics of transposable elements: towards a community ecology of the genome. Trends Genet 2009, 25:317-323.
  • [64]Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. BMC Bioinformatics 2009, 10:421.
  • [65]Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26:2460-2461.
  • [66]Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013, 30:772-780.
  • [67]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [68]Price MN, Dehal PS, Arkin AP: FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009, 26:1641-1650.
  • [69]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [70]Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27:1164-1165.
  • [71]Data set available at the TreeBASE repository http://purl.org/phylo/treebase/phylows/study/TB2:S16144 webcite
  • [72]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14:1188-1190. http://weblogo.berkeley.edu/logo.cgi webcite
  文献评价指标  
  下载次数:37次 浏览次数:4次