| BMC Genomics | |
| Short tandem repeat number estimation from paired-end reads for multiple individuals by considering coalescent tree | |
| Research | |
| Naoki Nariai1  Takahiro Mimori2  Kaname Kojima2  Yosuke Kawai2  Masao Nagasaki2  Takanori Hasegawa2  | |
| [1] Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Drive #0761, 92093-0761, San Diego, USA;Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, 980-8573, Sendai, Japan; | |
| 关键词: High-throughput sequencing; Short tandem repeat; Coalescent theory; | |
| DOI : 10.1186/s12864-016-2821-0 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundTwo types of approaches are mainly considered for the repeat number estimation in short tandem repeat (STR) regions from high-throughput sequencing data: approaches directly counting repeat patterns included in sequence reads spanning the region and approaches based on detecting the difference between the insert size inferred from aligned paired-end reads and the actual insert size. Although the accuracy of repeat numbers estimated with the former approaches is high, the size of target STR regions is limited to the length of sequence reads. On the other hand, the latter approaches can handle STR regions longer than the length of sequence reads. However, repeat numbers estimated with the latter approaches is less accurate than those with the former approaches.ResultsWe proposed a new statistical model named coalescentSTR that estimates repeat numbers from paired-end read distances for multiple individuals simultaneously by connecting the read generative model for each individual with their genealogy. In the model, the genealogy is represented by handling coalescent trees as hidden variables, and the summation of the hidden variables is taken on coalescent trees sampled based on phased genotypes located around a target STR region with Markov chain Monte Carlo. In the sampled coalescent trees, repeat number information from insert size data is propagated, and more accurate estimation of repeat numbers is expected for STR regions longer than the length of sequence reads.For finding the repeat numbers maximizing the likelihood of the model on the estimation of repeat numbers, we proposed a state-of-the-art belief propagation algorithm on sampled coalescent trees.ConclusionsWe verified the effectiveness of the proposed approach from the comparison with existing methods by using simulation datasets and real whole genome and whole exome data for HapMap individuals analyzed in the 1000 Genomes Project.
【 授权许可】
CC BY
© The Author(s) 2016
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311107802405ZK.pdf | 648KB | ||
| MediaObjects/41408_2023_927_MOESM1_ESM.png | 1051KB | Other | |
| Fig. 10 | 1239KB | Image | |
| Fig. 2 | 86KB | Image | |
| Fig. 1 | 2460KB | Image | |
| Fig. 3 | 305KB | Image | |
| Fig. 3 | 77KB | Image | |
| 12937_2016_133_Article_IEq1.gif | 1KB | Image | |
| Fig. 4 | 62KB | Image | |
| Fig. 4 | 79KB | Image | |
| MediaObjects/13068_2023_2399_MOESM4_ESM.xlsx | 12KB | Other | |
| Fig. 6 | 54KB | Image | |
| Fig. 5 | 91KB | Image | |
| Fig. 3 | 254KB | Image | |
| Fig. 6 | 90KB | Image | |
| 12951_2017_292_Article_IEq1.gif | 1KB | Image | |
| 12951_2015_155_Article_IEq62.gif | 1KB | Image | |
| MediaObjects/13046_2022_2359_MOESM2_ESM.docx | 15KB | Other | |
| Fig. 2 | 1305KB | Image | |
| Fig. 1 | 1997KB | Image | |
| Fig. 1 | 690KB | Image | |
| Fig. 5 | 90KB | Image | |
| Fig. 2 | 661KB | Image | |
| Fig. 6 | 118KB | Image | |
| Fig. 5 | 2831KB | Image | |
| Fig. 4 | 2788KB | Image | |
| 505KB | Image | ||
| Fig. 1 | 61KB | Image | |
| Fig. 1 | 357KB | Image | |
| MediaObjects/40360_2023_695_MOESM1_ESM.docx | 12962KB | Other | |
| Fig. 2 | 1255KB | Image | |
| Fig. 6 | 4844KB | Image | |
| Fig. 2 | 78KB | Image | |
| Fig. 4 | 244KB | Image | |
| Fig. 1 | 67KB | Image | |
| 12951_2017_255_Article_IEq40.gif | 1KB | Image | |
| 12936_2016_1182_Article_IEq39.gif | 1KB | Image | |
| MediaObjects/12947_2023_317_MOESM1_ESM.docx | 420KB | Other | |
| Fig. 2 | 2049KB | Image | |
| Fig. 3 | 1017KB | Image | |
| Fig. 1 | 300KB | Image | |
| Fig. 1 | 171KB | Image | |
| Fig. 2 | 58KB | Image | |
| Fig. 2 | 358KB | Image | |
| 12936_2017_2045_Article_IEq18.gif | 1KB | Image | |
| Fig. 4 | 1866KB | Image | |
| Fig. 2 | 1452KB | Image | |
| 12936_2017_2014_Article_IEq29.gif | 1KB | Image | |
| Fig. 2 | 209KB | Image | |
| 12936_2015_836_Article_IEq13.gif | 1KB | Image | |
| 12951_2017_255_Article_IEq41.gif | 1KB | Image | |
| 12936_2015_836_Article_IEq14.gif | 1KB | Image | |
| MediaObjects/13046_2023_2862_MOESM5_ESM.png | 235KB | Other | |
| MediaObjects/12974_2023_2923_MOESM1_ESM.docx | 3913KB | Other | |
| Fig. 1 | 110KB | Image | |
| MediaObjects/13046_2023_2862_MOESM6_ESM.png | 301KB | Other | |
| Fig. 2 | 101KB | Image | |
| Fig. 1 | 344KB | Image | |
| Fig. 3 | 512KB | Image | |
| Fig. 5 | 144KB | Image | |
| Fig. 4 | 1156KB | Image | |
| 12951_2015_155_Article_IEq65.gif | 1KB | Image | |
| 12951_2016_177_Article_IEq1.gif | 1KB | Image |
【 图 表 】
12951_2016_177_Article_IEq1.gif
12951_2015_155_Article_IEq65.gif
Fig. 4
Fig. 5
Fig. 3
Fig. 1
Fig. 2
Fig. 1
12936_2015_836_Article_IEq14.gif
12951_2017_255_Article_IEq41.gif
12936_2015_836_Article_IEq13.gif
Fig. 2
12936_2017_2014_Article_IEq29.gif
Fig. 2
Fig. 4
12936_2017_2045_Article_IEq18.gif
Fig. 2
Fig. 2
Fig. 1
Fig. 1
Fig. 3
Fig. 2
12936_2016_1182_Article_IEq39.gif
12951_2017_255_Article_IEq40.gif
Fig. 1
Fig. 4
Fig. 2
Fig. 6
Fig. 2
Fig. 1
Fig. 1
Fig. 4
Fig. 5
Fig. 6
Fig. 2
Fig. 5
Fig. 1
Fig. 1
Fig. 2
12951_2015_155_Article_IEq62.gif
12951_2017_292_Article_IEq1.gif
Fig. 6
Fig. 3
Fig. 5
Fig. 6
Fig. 4
Fig. 4
12937_2016_133_Article_IEq1.gif
Fig. 3
Fig. 3
Fig. 1
Fig. 2
Fig. 10
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
PDF