BMC Genomics | |
Semantic biclustering for finding local, interpretable and predictive expression patterns | |
Research | |
Jiří Kléma1  Filip železný1  František Malinka1  | |
[1] Department of Computer Science, Czech Technical University in Prague, Karlovo náměstí 13, 121 35, Prague 2, Czech Republic; | |
关键词: Biclustering; Enrichment analysis; Symbolic machine learning; Ontology; Gene expression; | |
DOI : 10.1186/s12864-017-4132-5 | |
来源: Springer | |
【 摘 要 】
BackgroundOne of the major challenges in the analysis of gene expression data is to identify local patterns composed of genes showing coherent expression across subsets of experimental conditions. Such patterns may provide an understanding of underlying biological processes related to these conditions. This understanding can further be improved by providing concise characterizations of the genes and situations delimiting the pattern.ResultsWe propose a method called semantic biclustering with the aim to detect interpretable rectangular patterns in binary data matrices. As usual in biclustering, we seek homogeneous submatrices, however, we also require that the included elements can be jointly described in terms of semantic annotations pertaining to both rows (genes) and columns (samples). To find such interpretable biclusters, we explore two strategies. The first endows an existing biclustering algorithm with the semantic ingredients. The other is based on rule and tree learning known from machine learning.ConclusionsThe two alternatives are tested in experiments with two Drosophila melanogaster gene expression datasets. Both strategies are shown to detect sets of compact biclusters with semantic descriptions that also remain largely valid for unseen (testing) data. This desirable generalization aspect is more emphasized in the strategy stemming from conventional biclustering although this is traded off by the complexity of the descriptions (number of ontology terms employed), which, on the other hand, is lower for the alternative strategy.
【 授权许可】
CC BY
© The Author(s) 2017
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311107630775ZK.pdf | 1340KB | download | |
Fig. 1 | 753KB | Image | download |
Fig. 3 | 240KB | Image | download |
12951_2015_155_Article_IEq44.gif | 1KB | Image | download |
Fig. 3 | 266KB | Image | download |
Fig. 1 | 40KB | Image | download |
Fig. 2 | 204KB | Image | download |
MediaObjects/40249_2023_1146_MOESM8_ESM.png | 1162KB | Other | download |
Fig. 3 | 56KB | Image | download |
Fig. 3 | 157KB | Image | download |
Fig. 4 | 56KB | Image | download |
MediaObjects/40360_2023_694_MOESM1_ESM.pdf | 78KB | download | |
12951_2015_155_Article_IEq49.gif | 1KB | Image | download |
Fig. 6 | 2604KB | Image | download |
Fig. 2 | 80KB | Image | download |
Fig. 1 | 163KB | Image | download |
13046_2023_2867_Article_IEq1.gif | 1KB | Image | download |
MediaObjects/40249_2023_1146_MOESM11_ESM.xls | 516KB | Other | download |
MediaObjects/12951_2023_2108_MOESM1_ESM.pptx | 3021KB | Other | download |
465KB | Image | download | |
40170_2023_319_Article_IEq3.gif | 1KB | Image | download |
MediaObjects/13041_2023_1060_MOESM1_ESM.pdf | 438KB | download | |
MediaObjects/40249_2023_1146_MOESM12_ESM.xls | 215KB | Other | download |
Fig. 1 | 38KB | Image | download |
12951_2017_255_Article_IEq32.gif | 1KB | Image | download |
MediaObjects/40249_2023_1146_MOESM13_ESM.xls | 73KB | Other | download |
Fig. 2 | 46KB | Image | download |
MediaObjects/12888_2023_5281_MOESM1_ESM.docx | 14KB | Other | download |
Fig. 3 | 40KB | Image | download |
Fig. 5 | 181KB | Image | download |
Fig. 9 | 1287KB | Image | download |
Fig. 7 | 684KB | Image | download |
MediaObjects/13046_2023_2843_MOESM1_ESM.docx | 17KB | Other | download |
Fig. 2 | 536KB | Image | download |
Fig. 1 | 258KB | Image | download |
MediaObjects/12888_2023_5208_MOESM1_ESM.docx | 7KB | Other | download |
12936_2017_1963_Article_IEq60.gif | 1KB | Image | download |
Fig. 8 | 780KB | Image | download |
Fig. 3 | 2506KB | Image | download |
12936_2016_1316_Article_IEq8.gif | 1KB | Image | download |
12951_2017_255_Article_IEq33.gif | 1KB | Image | download |
MediaObjects/12951_2023_2144_MOESM1_ESM.docx | 15232KB | Other | download |
12951_2017_255_Article_IEq34.gif | 1KB | Image | download |
12951_2015_155_Article_IEq53.gif | 1KB | Image | download |
MediaObjects/13046_2023_2843_MOESM2_ESM.docx | 5319KB | Other | download |
12951_2015_155_Article_IEq54.gif | 1KB | Image | download |
【 图 表 】
12951_2015_155_Article_IEq54.gif
12951_2015_155_Article_IEq53.gif
12951_2017_255_Article_IEq34.gif
12951_2017_255_Article_IEq33.gif
12936_2016_1316_Article_IEq8.gif
Fig. 3
Fig. 8
12936_2017_1963_Article_IEq60.gif
Fig. 1
Fig. 2
Fig. 7
Fig. 9
Fig. 5
Fig. 3
Fig. 2
12951_2017_255_Article_IEq32.gif
Fig. 1
40170_2023_319_Article_IEq3.gif
13046_2023_2867_Article_IEq1.gif
Fig. 1
Fig. 2
Fig. 6
12951_2015_155_Article_IEq49.gif
Fig. 4
Fig. 3
Fig. 3
Fig. 2
Fig. 1
Fig. 3
12951_2015_155_Article_IEq44.gif
Fig. 3
Fig. 1
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]