期刊论文详细信息
Genetics Selection Evolution
Efficient genomic prediction based on whole-genome sequence data using split-and-merge Bayesian variable selection
Research Article
Aniek C. Bouwman1  Mario P. L. Calus1  Roel F. Veerkamp1  Chris Schrooten2 
[1] Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 338, 6700 AH, Wageningen, The Netherlands;CRV BV, 6800 AL, Arnhem, The Netherlands;
关键词: Quantitative Trait Locus Region;    Effective Sample Size;    Genomic Prediction;    Genomic Estimate Breeding Value;    Somatic Cell Score;   
DOI  :  10.1186/s12711-016-0225-x
 received in 2016-02-17, accepted in 2016-06-16,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundUse of whole-genome sequence data is expected to increase persistency of genomic prediction across generations and breeds but affects model performance and requires increased computing time. In this study, we investigated whether the split-and-merge Bayesian stochastic search variable selection (BSSVS) model could overcome these issues. BSSVS is performed first on subsets of sequence-based variants and then on a merged dataset containing variants selected in the first step.ResultsWe used a dataset that included 4,154,064 variants after editing and de-regressed proofs for 3415 reference and 2138 validation bulls for somatic cell score, protein yield and interval first to last insemination. In the first step, BSSVS was performed on 106 subsets each containing ~39,189 variants. In the second step, 1060 up to 472,492 variants, selected from the first step, were included to estimate the accuracy of genomic prediction. Accuracies were at best equal to those achieved with the commonly used Bovine 50k-SNP chip, although the number of variants within a few well-known quantitative trait loci regions was considerably enriched. When variant selection and the final genomic prediction were performed on the same data, predictions were biased. Predictions computed as the average of the predictions computed for each subset achieved the highest accuracies, i.e. 0.5 to 1.1 % higher than the accuracies obtained with the 50k-SNP chip, and yielded the least biased predictions. Finally, the accuracy of genomic predictions obtained when all sequence-based variants were included was similar or up to 1.4 % lower compared to that based on the average predictions across the subsets. By applying parallelization, the split-and-merge procedure was completed in 5 days, while the standard analysis including all sequence-based variants took more than three months.ConclusionsThe split-and-merge approach splits one large computational task into many much smaller ones, which allows the use of parallel processing and thus efficient genomic prediction based on whole-genome sequence data. The split-and-merge approach did not improve prediction accuracy, probably because we used data on a single breed for which relationships between individuals were high. Nevertheless, the split-and-merge approach may have potential for applications on data from multiple breeds.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311107168797ZK.pdf 3864KB PDF download
Fig. 8 980KB Image download
Fig. 2 1084KB Image download
Fig. 5 508KB Image download
12936_2017_2051_Article_IEq78.gif 1KB Image download
Fig. 9 902KB Image download
Fig. 1 816KB Image download
12951_2015_155_Article_IEq2.gif 1KB Image download
Fig. 7 5305KB Image download
Fig. 1 675KB Image download
Fig. 1 630KB Image download
Fig. 1 101KB Image download
Fig. 10 427KB Image download
MediaObjects/42004_2023_1026_MOESM6_ESM.pdf 1159KB PDF download
Fig. 2 124KB Image download
Fig. 1 156KB Image download
MediaObjects/12888_2023_5213_MOESM1_ESM.pdf 485KB PDF download
Fig. 1 123KB Image download
MediaObjects/12951_2022_1747_MOESM1_ESM.pdf 1907KB PDF download
12867_2016_60_Article_IEq2.gif 1KB Image download
Fig. 9 45KB Image download
Fig. 2 937KB Image download
Fig. 4 2368KB Image download
12867_2016_60_Article_IEq1.gif 2KB Image download
12936_2017_2014_Article_IEq78.gif 1KB Image download
12951_2015_155_Article_IEq4.gif 1KB Image download
Fig. 1 5136KB Image download
Fig. 6 1766KB Image download
Fig. 3 595KB Image download
Fig. 3 1801KB Image download
Fig. 4 183KB Image download
Fig. 7 372KB Image download
Fig. 1 206KB Image download
Fig. 1 2201KB Image download
12936_2017_2051_Article_IEq85.gif 1KB Image download
12936_2017_1932_Article_IEq15.gif 1KB Image download
12936_2017_2051_Article_IEq86.gif 1KB Image download
Fig. 5 598KB Image download
MediaObjects/41408_2023_928_MOESM1_ESM.docx 12KB Other download
Fig. 1 429KB Image download
MediaObjects/41408_2023_928_MOESM2_ESM.pdf 40KB PDF download
41512_2023_158_Article_IEq1.gif 1KB Image download
Fig. 7 1996KB Image download
41512_2023_158_Article_IEq2.gif 1KB Image download
Fig. 3 585KB Image download
Fig. 5 640KB Image download
MediaObjects/12894_2023_1313_MOESM4_ESM.xlsx 14KB Other download
12951_2017_323_Article_IEq1.gif 1KB Image download
Fig. 8 3631KB Image download
MediaObjects/13046_2023_2865_MOESM6_ESM.tif 2738KB Other download
41512_2023_158_Article_IEq9.gif 1KB Image download
12951_2015_155_Article_IEq6.gif 1KB Image download
Fig. 6 488KB Image download
Fig. 1 196KB Image download
Fig. 6 601KB Image download
Fig. 2 283KB Image download
Fig. 2 650KB Image download
Fig. 6 514KB Image download
Fig. 8 2130KB Image download
MediaObjects/12888_2023_5289_MOESM1_ESM.docx 690KB Other download
Fig. 1 224KB Image download
41512_2023_158_Article_IEq20.gif 1KB Image download
Fig. 1 439KB Image download
12951_2017_270_Article_IEq3.gif 1KB Image download
Fig. 2 786KB Image download
Fig. 2 422KB Image download
MediaObjects/13068_2023_2403_MOESM2_ESM.xls 1986KB Other download
41512_2023_158_Article_IEq26.gif 1KB Image download
Fig. 4 1825KB Image download
Fig. 3 313KB Image download
MediaObjects/13046_2023_2865_MOESM7_ESM.tif 1295KB Other download
Fig. 4 1482KB Image download
Fig. 1 395KB Image download
350KB Image download
Fig. 4 463KB Image download
Fig. 9 519KB Image download
Fig. 9 217KB Image download
MediaObjects/13046_2023_2853_MOESM2_ESM.pdf 2039KB PDF download
42004_2023_1025_Article_IEq7.gif 1KB Image download
Fig. 2 256KB Image download
40517_2023_273_Article_IEq2.gif 1KB Image download
Fig. 1 205KB Image download
40517_2023_273_Article_IEq4.gif 1KB Image download
MediaObjects/40249_2023_1146_MOESM1_ESM.png 4112KB Other download
40517_2023_273_Article_IEq6.gif 1KB Image download
Fig. 2 679KB Image download
MediaObjects/41408_2023_929_MOESM1_ESM.pdf 265KB PDF download
40517_2023_273_Article_IEq9.gif 1KB Image download
MediaObjects/40517_2023_273_MOESM1_ESM.xlsx 103KB Other download
Fig. 1 48KB Image download
MediaObjects/13046_2023_2865_MOESM10_ESM.jpg 226KB Other download
Fig. 3 821KB Image download
【 图 表 】

Fig. 3

Fig. 1

40517_2023_273_Article_IEq9.gif

Fig. 2

40517_2023_273_Article_IEq6.gif

40517_2023_273_Article_IEq4.gif

Fig. 1

40517_2023_273_Article_IEq2.gif

Fig. 2

42004_2023_1025_Article_IEq7.gif

Fig. 9

Fig. 9

Fig. 4

Fig. 1

Fig. 4

Fig. 3

Fig. 4

41512_2023_158_Article_IEq26.gif

Fig. 2

Fig. 2

12951_2017_270_Article_IEq3.gif

Fig. 1

41512_2023_158_Article_IEq20.gif

Fig. 1

Fig. 8

Fig. 6

Fig. 2

Fig. 2

Fig. 6

Fig. 1

Fig. 6

12951_2015_155_Article_IEq6.gif

41512_2023_158_Article_IEq9.gif

Fig. 8

12951_2017_323_Article_IEq1.gif

Fig. 5

Fig. 3

41512_2023_158_Article_IEq2.gif

Fig. 7

41512_2023_158_Article_IEq1.gif

Fig. 1

Fig. 5

12936_2017_2051_Article_IEq86.gif

12936_2017_1932_Article_IEq15.gif

12936_2017_2051_Article_IEq85.gif

Fig. 1

Fig. 1

Fig. 7

Fig. 4

Fig. 3

Fig. 3

Fig. 6

Fig. 1

12951_2015_155_Article_IEq4.gif

12936_2017_2014_Article_IEq78.gif

12867_2016_60_Article_IEq1.gif

Fig. 4

Fig. 2

Fig. 9

12867_2016_60_Article_IEq2.gif

Fig. 1

Fig. 1

Fig. 2

Fig. 10

Fig. 1

Fig. 1

Fig. 1

Fig. 7

12951_2015_155_Article_IEq2.gif

Fig. 1

Fig. 9

12936_2017_2051_Article_IEq78.gif

Fig. 5

Fig. 2

Fig. 8

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  文献评价指标  
  下载次数:6次 浏览次数:0次