期刊论文详细信息
Microbial Cell Factories
Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: The role of extra copies of glpK, glpX, and tktA genes
Research
Christoph Albermann1  Georg A Sprenger1  Katrin Gottlieb1 
[1] Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany;
关键词: Escherichia coli;    Glycerol;    Crude glycerol;    L-phenylalanine;    Glycerol kinase;    Transketolase;    Fructose-1,6-bisphosphatase;    Metabolic engineering;   
DOI  :  10.1186/s12934-014-0096-1
 received in 2014-03-26, accepted in 2014-06-24,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundFor the production of L-phenylalanine (L-Phe), two molecules of phosphoenolpyruvate (PEP) and one molecule erythrose-4-phosphate (E4P) are necessary. PEP stems from glycolysis whereas E4P is formed in the pentose phosphate pathway (PPP). Glucose, commonly used for L-Phe production with recombinant E. coli, is taken up via the PEP-dependent phosphotransferase system which delivers glucose-6-phosphate (G6P). G6P enters either glycolysis or the PPP. In contrast, glycerol is phosphorylated by an ATP-dependent glycerol kinase (GlpK) thus saving one PEP. However, two gluconeogenic reactions (fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, FBPase) are necessary for growth and provision of E4P. Glycerol has become an important carbon source for biotechnology and reports on production of L-Phe from glycerol are available. However, the influence of FBPase and transketolase reactions on L-Phe production has not been reported.ResultsL-Phe productivity of parent strain FUS4/pF81 (plasmid-encoded genes for aroF, aroB, aroL, pheA) was compared on glucose and glycerol as C sources. On glucose, a maximal carbon recovery of 0.19 mM CPhe/CGlucose and a maximal space-time-yield (STY) of 0.13 g l−1 h−1 was found. With glycerol, the maximal carbon recovery was nearly the same (0.18 mM CPhe/CGlycerol), but the maximal STY was higher (0.21 g l−1 h−1). We raised the chromosomal gene copy number of the genes glpK (encoding glycerol kinase), tktA (encoding transketolase), and glpX (encoding fructose-1,6-bisphosphatase) individually. Overexpression of glpK (or its feedback-resistant variant, glpKG232D) had little effect on growth rate; L-Phe production was about 30% lower than in FUS4/pF81. Whereas the overexpression of either glpX or tktA had minor effects on productivity (0.20 mM CPhe/CGlycerol; 0.25 g l−1 h−1 and 0.21 mM CPhe/CGlycerol; 0.23 g l−1 h−1, respectively), the combination of extra genes of glpX and tktA together led to an increase in maximal STY of about 80% (0.37 g l−1 h−1) and a carbon recovery of 0.26 mM CPhe/CGlycerol.ConclusionsEnhancing the gene copy numbers for glpX and tktA increased L-Phe productivity from glycerol without affecting growth rate. Engineering of glycerol metabolism towards L-Phe production in E. coli has to balance the pathways of gluconeogenesis, glycolysis, and PPP to improve the supply of the precursors, PEP and E4P.

【 授权许可】

Unknown   
© Gottlieb et al. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311106353372ZK.pdf 1117KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  文献评价指标  
  下载次数:6次 浏览次数:0次