期刊论文详细信息
BMC Genomics
Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar)
Research Article
Rama Bangera1  René Figueroa1  Jean P. Lhorente1  José M. Yáñez2  Katharina Correa3 
[1] Aquainnovo S.A, Talca 60, Puerto Montt, Chile;Aquainnovo S.A, Talca 60, Puerto Montt, Chile;Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago, Chile;Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago, Chile;
关键词: Genomic selection;    Salmon Rickettsial Syndrome;    Disease resistance;    Reliability;   
DOI  :  10.1186/s12864-017-3487-y
 received in 2016-08-12, accepted in 2017-01-11,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundSalmon Rickettsial Syndrome (SRS) caused by Piscirickettsia salmonis is a major disease affecting the Chilean salmon industry. Genomic selection (GS) is a method wherein genome-wide markers and phenotype information of full-sibs are used to predict genomic EBV (GEBV) of selection candidates and is expected to have increased accuracy and response to selection over traditional pedigree based Best Linear Unbiased Prediction (PBLUP). Widely used GS methods such as genomic BLUP (GBLUP), SNPBLUP, Bayes C and Bayesian Lasso may perform differently with respect to accuracy of GEBV prediction. Our aim was to compare the accuracy, in terms of reliability of genome-enabled prediction, from different GS methods with PBLUP for resistance to SRS in an Atlantic salmon breeding program. Number of days to death (DAYS), binary survival status (STATUS) phenotypes, and 50 K SNP array genotypes were obtained from 2601 smolts challenged with P. salmonis. The reliability of different GS methods at different SNP densities with and without pedigree were compared to PBLUP using a five-fold cross validation scheme.ResultsHeritability estimated from GS methods was significantly higher than PBLUP. Pearson’s correlation between predicted GEBV from PBLUP and GS models ranged from 0.79 to 0.91 and 0.79–0.95 for DAYS and STATUS, respectively. The relative increase in reliability from different GS methods for DAYS and STATUS with 50 K SNP ranged from 8 to 25% and 27–30%, respectively. All GS methods outperformed PBLUP at all marker densities. DAYS and STATUS showed superior reliability over PBLUP even at the lowest marker density of 3 K and 500 SNP, respectively. 20 K SNP showed close to maximal reliability for both traits with little improvement using higher densities.ConclusionsThese results indicate that genomic predictions can accelerate genetic progress for SRS resistance in Atlantic salmon and implementation of this approach will contribute to the control of SRS in Chile. We recommend GBLUP for routine GS evaluation because this method is computationally faster and the results are very similar with other GS methods. The use of lower density SNP or the combination of low density SNP and an imputation strategy may help to reduce genotyping costs without compromising gain in reliability.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311106267355ZK.pdf 798KB PDF download
Fig. 2 101KB Image download
Fig. 1 344KB Image download
Fig. 8 214KB Image download
Fig. 8 798KB Image download
Fig. 11 260KB Image download
Fig. 3 245KB Image download
Fig. 6 1819KB Image download
Fig. 12 492KB Image download
Fig. 1 89KB Image download
Fig. 1 347KB Image download
Fig. 1 31KB Image download
Fig. 13 402KB Image download
Fig. 2 37KB Image download
Fig. 5 1803KB Image download
MediaObjects/41408_2023_927_MOESM3_ESM.tif 2072KB Other download
Fig. 14 165KB Image download
Fig. 3 424KB Image download
Fig. 15 98KB Image download
Fig. 1 294KB Image download
Fig. 16 216KB Image download
12888_2023_5206_Article_IEq1.gif 1KB Image download
Fig. 17 99KB Image download
12888_2023_5206_Article_IEq3.gif 1KB Image download
Fig. 18 701KB Image download
12951_2015_155_Article_IEq69.gif 1KB Image download
MediaObjects/40249_2023_1142_MOESM1_ESM.docx 16KB Other download
Fig. 4 431KB Image download
Fig. 6 993KB Image download
Fig. 3 257KB Image download
MediaObjects/13049_2023_1131_MOESM3_ESM.mp4 884KB Other download
Fig. 19 120KB Image download
Fig. 1 4104KB Image download
MediaObjects/41408_2023_927_MOESM4_ESM.tif 7017KB Other download
Fig. 5 4247KB Image download
Fig. 7 3820KB Image download
MediaObjects/41021_2023_284_MOESM1_ESM.pdf 242KB PDF download
Fig. 2 2313KB Image download
Fig. 10 58KB Image download
12951_2015_155_Article_IEq70.gif 1KB Image download
Fig. 3 603KB Image download
Fig. 1 410KB Image download
Fig. 1 801KB Image download
MediaObjects/40798_2023_647_MOESM1_ESM.docx 181KB Other download
12947_2017_100_Article_IEq1.gif 1KB Image download
Fig. 3 2370KB Image download
Fig. 3 131KB Image download
Fig. 1 103KB Image download
Fig. 4 2772KB Image download
Fig. 2 640KB Image download
Fig. 2 522KB Image download
Fig. 1 127KB Image download
Fig. 2 105KB Image download
Fig. 2 654KB Image download
Fig. 1 1293KB Image download
Fig. 3 1367KB Image download
Fig. 3 360KB Image download
12951_2015_155_Article_IEq72.gif 1KB Image download
Fig. 6 1635KB Image download
12951_2015_155_Article_IEq73.gif 1KB Image download
Fig. 7 38KB Image download
Fig. 6 578KB Image download
Fig. 1 1209KB Image download
12951_2016_246_Article_IEq1.gif 1KB Image download
Fig. 2 3749KB Image download
Fig. 1 531KB Image download
Fig. 4 580KB Image download
Fig. 2 1335KB Image download
Fig. 1 1829KB Image download
Fig. 5 2363KB Image download
Fig. 5 989KB Image download
MediaObjects/12974_2023_2934_MOESM1_ESM.docx 125KB Other download
【 图 表 】

Fig. 5

Fig. 5

Fig. 1

Fig. 2

Fig. 4

Fig. 1

Fig. 2

12951_2016_246_Article_IEq1.gif

Fig. 1

Fig. 6

Fig. 7

12951_2015_155_Article_IEq73.gif

Fig. 6

12951_2015_155_Article_IEq72.gif

Fig. 3

Fig. 3

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 2

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 3

12947_2017_100_Article_IEq1.gif

Fig. 1

Fig. 1

Fig. 3

12951_2015_155_Article_IEq70.gif

Fig. 10

Fig. 2

Fig. 7

Fig. 5

Fig. 1

Fig. 19

Fig. 3

Fig. 6

Fig. 4

12951_2015_155_Article_IEq69.gif

Fig. 18

12888_2023_5206_Article_IEq3.gif

Fig. 17

12888_2023_5206_Article_IEq1.gif

Fig. 16

Fig. 1

Fig. 15

Fig. 3

Fig. 14

Fig. 5

Fig. 2

Fig. 13

Fig. 1

Fig. 1

Fig. 1

Fig. 12

Fig. 6

Fig. 3

Fig. 11

Fig. 8

Fig. 8

Fig. 1

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  文献评价指标  
  下载次数:3次 浏览次数:1次