BMC Bioinformatics | |
Improving protein fold recognition by random forest | |
Proceedings | |
Jianlin Cheng1  Taeho Jo1  | |
[1] Department of Computer Science, Informatics Institute, C. Bond Life Science Center, University of Missouri, 65211, Columbia, MO, USA; | |
关键词: Random Forest; Protein Pair; Fold Recognition; Template Protein; Imbalanced Dataset; | |
DOI : 10.1186/1471-2105-15-S11-S14 | |
来源: Springer | |
【 摘 要 】
BackgroundRecognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds.ResultsRF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels.ConclusionsThe good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition.
【 授权许可】
CC BY
© Jo and Cheng; licensee BioMed Central Ltd. 2014
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311105590418ZK.pdf | 628KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]