期刊论文详细信息
BMC Biology
Larval body patterning and apical organs are conserved in animal evolution
Research Article
Detlev Arendt1  Maria Antonietta Tosches1  Heather Marlow1  Patrick R Steinmetz2  Tomas Larsson3  Raju Tomer4  Antonella Lauri5 
[1] European Molecular Biology Laboratory, Development Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany;European Molecular Biology Laboratory, Development Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany;Department for Molecular Evolution and Development, Centre for Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria;European Molecular Biology Laboratory, Development Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany;European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany;European Molecular Biology Laboratory, Development Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany;Howard Hughes Medical Institute, Stanford University, 94305, Stanford, CA, USA;European Molecular Biology Laboratory, Development Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany;Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, München, Germany;
关键词: Apical-blastoporal axis;    Apical organ;    Body plan;    Larval evolution;   
DOI  :  10.1186/1741-7007-12-7
 received in 2013-11-04, accepted in 2014-01-24,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundPlanktonic ciliated larvae are characteristic for the life cycle of marine invertebrates. Their most prominent feature is the apical organ harboring sensory cells and neurons of largely undetermined function. An elucidation of the relationships between various forms of primary larvae and apical organs is key to understanding the evolution of animal life cycles. These relationships have remained enigmatic due to the scarcity of comparative molecular data.ResultsTo compare apical organs and larval body patterning, we have studied regionalization of the episphere, the upper hemisphere of the trochophore larva of the marine annelid Platynereis dumerilii. We examined the spatial distribution of transcription factors and of Wnt signaling components previously implicated in anterior neural development. Pharmacological activation of Wnt signaling with Gsk3β antagonists abolishes expression of apical markers, consistent with a repressive role of Wnt signaling in the specification of apical tissue. We refer to this Wnt-sensitive, six3- and foxq2-expressing part of the episphere as the ‘apical plate’. We also unraveled a molecular signature of the apical organ - devoid of six3 but expressing foxj, irx, nkx3 and hox - that is shared with other marine phyla including cnidarians. Finally, we characterized the cell types that form part of the apical organ by profiling by image registration, which allows parallel expression profiling of multiple cells. Besides the hox-expressing apical tuft cells, this revealed the presence of putative light- and mechanosensory as well as multiple peptidergic cell types that we compared to apical organ cell types of other animal phyla.ConclusionsThe similar formation of a six3+, foxq2+ apical plate, sensitive to Wnt activity and with an apical tuft in its six3-free center, is most parsimoniously explained by evolutionary conservation. We propose that a simple apical organ - comprising an apical tuft and a basal plexus innervated by sensory-neurosecretory apical plate cells - was present in the last common ancestors of cnidarians and bilaterians. One of its ancient functions would have been the control of metamorphosis. Various types of apical plate cells would then have subsequently been added to the apical organ in the divergent bilaterian lineages. Our findings support an ancient and common origin of primary ciliated larvae.

【 授权许可】

CC BY   
© Marlow et al.; licensee BioMed Central Ltd. 2014

【 预 览 】
附件列表
Files Size Format View
RO202311104951476ZK.pdf 3454KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  • [93]
  • [94]
  • [95]
  • [96]
  • [97]
  • [98]
  • [99]
  • [100]
  • [101]
  • [102]
  • [103]
  • [104]
  • [105]
  • [106]
  • [107]
  • [108]
  • [109]
  • [110]
  • [111]
  • [112]
  • [113]
  • [114]
  • [115]
  • [116]
  • [117]
  • [118]
  • [119]
  • [120]
  • [121]
  • [122]
  • [123]
  • [124]
  • [125]
  • [126]
  文献评价指标  
  下载次数:1次 浏览次数:0次