期刊论文详细信息
EvoDevo
Expression of Hox, Cdx, and Six3/6 genes in the hoplonemertean Pantinonemertes californiensis offers insight into the evolution of maximally indirect development in the phylum Nemertea
Svetlana A Maslakova1  Laurel S Hiebert1 
[1] Oregon Institute of Marine Biology, University of Oregon, Charleston, OR, USA
关键词: Hox;    Larval evolution;    Nemertea;    Pilidium;    Maximally indirect development;   
Others  :  1222380
DOI  :  10.1186/s13227-015-0021-7
 received in 2015-02-05, accepted in 2015-07-15,  发布年份 2015
PDF
【 摘 要 】

Background

Maximally indirect development via a pilidium larva is unique to the pilidiophoran clade of phylum Nemertea. All other nemerteans have more or less direct development. The origin of pilidial development with disjunct invaginated juvenile rudiments and catastrophic metamorphosis remains poorly understood. While basal members of the phylum, the Palaeonemertea, do not appear to have ever had a pilidium, certain similarity exists in the development of the Pilidiophora and the sister clade, the Hoplonemertea. It is unclear whether this similarity represents the homology and whether pilidial development evolved before or after pilidiophorans diverged from hoplonemerteans. To gain insight into these questions, we examined the expression of Hox, Cdx, and Six3/6 genes in the development of the hoplonemertean Pantinonemertes californiensis and expression of Six3/6 in the pilidium of Micrura alaskensis. To further characterize the function of larval structures showing expression of these genes, we examined the serotonergic nervous system and cell proliferation in P. californiensis.

Results

We show that Hox and Cdx genes, which pattern the pilidial imaginal discs giving rise to the juvenile trunk, are expressed in paired posterior epidermal invaginations in P. californiensis larvae. We also show that Six3/6 patterns both the pilidial cephalic discs, which give rise to the juvenile head, and a pair of anterior epidermal invaginations in hoplonemertean development. We show that anterior invaginations in larval P. californiensis are associated with a pair of serotonergic neurons, and thus may have a role in the development of the juvenile nervous system. This is similar to the role of cephalic discs in pilidiophoran development. Finally, we show that four zones of high cell proliferation correspond to the paired invaginations in P. californiensis, suggesting that these invaginations may play a similar role in the development of the hoplonemertean juvenile to the role of imaginal discs in the pilidium, which also exhibit high rates of cell proliferation.

Conclusions

Expression of Hox, Cdx, and Six3/6 genes supports the homology between the imaginal discs of the pilidium and the paired larval invaginations in hoplonemerteans. This suggests that invaginated juvenile rudiments (possible precursors to pilidial imaginal discs) may have been present in the most recent common ancestor of the Pilidiophora and Hoplonemertea.

【 授权许可】

   
2015 Hiebert and Maslakova.

【 预 览 】
附件列表
Files Size Format View
20150820030210243.pdf 3325KB PDF download
Fig.9. 34KB Image download
Fig.8. 105KB Image download
Fig.7. 57KB Image download
Fig.6. 31KB Image download
Fig.5. 92KB Image download
Fig.4. 120KB Image download
Fig.3. 67KB Image download
Fig.2. 101KB Image download
Fig.1. 56KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

【 参考文献 】
  • [1]Norenburg JL, Stricker SA. Phylum Nemertea. In: Atlas of marine invertebrate larvae‎. Young CM, Sewall MA, Rice ME, editors. Academic Press, San Diego; 2002: p.163-177.
  • [2]Maslakova SA. The invention of the pilidium larva in an otherwise perfectly good spiralian phylum Nemertea. Integr Comp Biol. 2010; 50:734-743.
  • [3]Maslakova SA. Development to metamorphosis of the nemertean pilidium larva. Front Zool. 2010; 7(1):30. BioMed Central Full Text
  • [4]Cantell CE. Devouring of the larval tissues during the metamorphosis of pilidium larvae (Nemertini). Arkiv Fur Zoologi. 1966; 18(5):489-493.
  • [5]Lacalli TC. Diversity of form and behaviour among nemertean pilidium larvae. Acta Zoologica. 2005; 86(4):267-276.
  • [6]Thollesson M, Norenburg JL. Ribbon worm relationships: a phylogeny of the phylum Nemertea. Proc R Soc London Ser B Biol Sci. 2003; 270(1513):407-415.
  • [7]Andrade SCS, Montenegro H, Strand M, Schwartz ML, Kajihara H, Norenburg JL et al.. A transcriptomic approach to ribbon worm systematics (Nemertea): resolving the Pilidiophora problem. Mol Biol Evol. 2014; 31(12):3206-3215.
  • [8]Maslakova SA, Martindale MQ, Norenburg JL. Fundamental properties of the spiralian developmental program are displayed by the basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea). Dev Biol. 2004; 267(2):342-360.
  • [9]Maslakova SA, Martindale MQ, Norenburg JL. Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea). Evol Dev. 2004; 6(4):219-226.
  • [10]Andrade SCS, Strand M, Schwartz M, Chen HX, Kajihara H, von Döhren J et al.. Disentangling ribbon worm relationships: multi-locus analysis supports traditional classification of the phylum Nemertea. Cladistics. 2012; 28(2):141-159.
  • [11]Maslakova SA, Hiebert TC. From trochophore to pilidium and back again—a larva’s journey. Int J Dev Biol. 2014; 58:585-591.
  • [12]Maslakova SA, von Döhren J. Larval development with transitory epidermis in Paranemertes peregrina and other hoplonemerteans. Biol Bull. 2009; 216(3):273-292.
  • [13]Hiebert LS, Gavelis G, von Dassow G, Maslakova SA. Five invaginations and shedding of the larval epidermis during development of the hoplonemertean Pantinonemertes californiensis (Nemertea: Hoplonemertea). J Nat Hist. 2010; 44(37–40):2331-2347.
  • [14]Jägersten G. Evolution of the metazoan life cycle. A comprehensive theory. Academic Press, New York; 1972.
  • [15]Maslakova SA, Malakhov VV. A hidden larva in nemerteans of the order Hoplonemertini. Dokl Biol Sci. 1999; 366(6):314-317.
  • [16]Hiebert L, Maslakova S. Hox genes pattern the anterior-posterior axis of the juvenile but not the larva in a maximally indirect developing invertebrate, Micrura alaskensis (Nemertea). BMC Biol. 2015; 13:23. BioMed Central Full Text
  • [17]Matz MV, Alieva NO, Chenchik A, Lukyanov S. Amplification of cDNA ends using PCR suppression effect and step-out PCR. In: Ying S-Y, editor. Generation of cDNA libraries. Humana Press; 2003. p. 41–49.
  • [18]Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001; 17(8):754-755.
  • [19]Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003; 19(12):1572-1574.
  • [20]Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32(5):1792-1797.
  • [21]Chernyshev AV, Magarlamov TY. The first data on the nervous system of hoplonemertean larvae and new view on the position of Nemertea among Trochozoa. Dokl Akad Nauk SSSR. 2010; 430(4):571-573.
  • [22]Hammarsten OD. Beitrag zur Embryonalentwicklung der Malacobdella grossa (Müll.). [Contribution to the embryonic development of Malacobdella grossa (Müll.)]. Inaugural dissertation. Uppsala: Almqvist & Wiksells Boktryckeri A. B. (in German); 1918.
  • [23]Lebedinsky J. Nablyudeniya nad istoriei razvitiya nemertin [Observations on the development of the nemerteans]. Zapiski Novorossiiskago Obshchestva 1898;xxii:p. 1–123 (in Russian).
  • [24]Smith JE. The early development of the nemertean Cephalothrix rufifrons. Q J Microsc Sci. 1935; 77:335-381.
  • [25]Iwata F. Studies on the comparative embryology of nemerteans with special reference to their inter-relationships. Publ Akkeshi Mar Biol Stn. 1960; 10:1-51.
  • [26]Steinmetz PRH, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C et al.. Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo. 2010; 1(1):14. BioMed Central Full Text
  • [27]Bird AM, von Dassow G, Maslakova SA. How the pilidium larva grows. EvoDevo. 2014; 5:10. BioMed Central Full Text
  • [28]Iwata F. On the development of the nemertean Micrura akkeshiensis. Embryologia. 1958; 4:103-131.
  • [29]Schwartz ML. Untying a Gordian knot of worms: systematics and taxonomy of the Pilidiophora (phylum Nemertea) from multiple data sets. The George Washington University, Washington, DC, Ann Arbor; 2009.
  • [30]Schmidt GA. Embryonic development of littoral nemertines Lineus desori (mihi, species nova) and Lineus ruber (O. F. Mülleri, 1774, G. A. Schmidt, 1945) in connection with ecological relation changes of mature individuals when forming the new species Lineus ruber. Zool Poloniae 1964;14:75–122.
  文献评价指标  
  下载次数:10次 浏览次数:1次