期刊论文详细信息
Geochemical Transactions
Absorption mechanisms of Cu2+ on a biogenic bixbyite-like Mn2O3 produced by Bacillus CUA isolated from soil
Research Article
Jing Lai1  Wenfeng Tan2  Zhijun Zhang2  Xionghan Feng2  Hui Yin2  Fan Liu2 
[1]CAS Key laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Wushan, Guangzhou, China
[2]Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, China
关键词: Biogenic Mn oxide;    Mn-oxidizing bacteria;    Bixbyite;    XAFS;    Cu adsorption;   
DOI  :  10.1186/s12932-015-0020-6
 received in 2015-01-29, accepted in 2015-05-04,  发布年份 2015
来源: Springer
PDF
【 摘 要 】
BackgroundAlthough most reported biogenic Mn oxides are hexagonal birnessites, other types of biogenic Mn oxides also commonly occur in the environment. However, sorption characteristics and underlying mechanisms of the adsorption of heavy-metal ions on these biogenic Mn oxides are still rarely addressed. In this study, the sorption mechanisms of Cu(II) on a low valence biogenic Mn oxide, poorly crystallized bixbyite-like Mn2O3 (α-Mn2O3), were investigated.ResultsThe maximum adsorption capacity of Cu(II) onto this biogenic Mn oxide at pH 6.00 was 796 mmol/kg (0.45 mol Cu mol−1 Mn). The complex structure of adsorbed Cu(II) was constrained using Cu extended X-ray absorption fine structure (EXAFS) analysis, combined with structural parameters of the biogenic Mn oxide with alternately arranged regular and distorted MnO6 octahedra obtained through multiple-FEFF fitting of Mn EXAFS data. The sorbed Cu(II) was found to coordinate with the biogenic Mn oxide particle edges as inner-sphere complexes. At a relatively low Cu2+ loading (233 mmol/kg, pH 6.00), Cu(II) adsorbed onto the biogenic Mn oxide with two types of coordinated complexes, i.e., (1) coordinated with one regular/distorted MnO6 octahedron as a monodentate-mononuclear complex and (2) with two adjacent MnO6 octahedra as a bidentate-binuclear complex. While, at a relatively high Cu2+ loading (787 mmol/kg, pH 6.00), only one type of coordinated complex was constrained, the adsorbed Cu(II) coordinated with one regular/distorted MnO6 octahedron as a monodentate-mononuclear complex.ConclusionsThis research extends further insight into the bacterial Mn(II) oxidation in the environment and serves as a good reference for understanding the interactions between metal ions and biogenic low valence Mn oxides, which are still poorly explored either theoretically or practically.
【 授权许可】

Unknown   
© Zhang et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

【 预 览 】
附件列表
Files Size Format View
RO202311104902761ZK.pdf 1439KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  文献评价指标  
  下载次数:0次 浏览次数:2次