期刊论文详细信息
BMC Genomics
Performance of genomic prediction within and across generations in maritime pine
Research Article
Christophe Boury1  Christophe Plomion1  Jérôme Bartholomé1  Laurent Bouffier1  Marjorie Vidal2  Joost Van Heerwaarden3  Fikret Isik4 
[1] BIOGECO, INRA, Univ. Bordeaux, 33610, Cestas, France;BIOGECO, INRA, Univ. Bordeaux, 33610, Cestas, France;FCBA, Biotechnology and Advanced Silviculture Department, Genetics & Biotechnology Team, 33610, Cestas, France;Biometris, Wageningen University and Research Centre, NL-6700 AC, Wageningen, The Netherlands;Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA;
关键词: Genomic selection;    Growth;    Multiple generations;    Pinus pinaster;    Progeny validation;    Relatedness;    Stem straightness;   
DOI  :  10.1186/s12864-016-2879-8
 received in 2016-03-18, accepted in 2016-07-05,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundGenomic selection (GS) is a promising approach for decreasing breeding cycle length in forest trees. Assessment of progeny performance and of the prediction accuracy of GS models over generations is therefore a key issue.ResultsA reference population of maritime pine (Pinus pinaster) with an estimated effective inbreeding population size (status number) of 25 was first selected with simulated data. This reference population (n = 818) covered three generations (G0, G1 and G2) and was genotyped with 4436 single-nucleotide polymorphism (SNP) markers. We evaluated the effects on prediction accuracy of both the relatedness between the calibration and validation sets and validation on the basis of progeny performance. Pedigree-based (best linear unbiased prediction, ABLUP) and marker-based (genomic BLUP and Bayesian LASSO) models were used to predict breeding values for three different traits: circumference, height and stem straightness. On average, the ABLUP model outperformed genomic prediction models, with a maximum difference in prediction accuracies of 0.12, depending on the trait and the validation method. A mean difference in prediction accuracy of 0.17 was found between validation methods differing in terms of relatedness. Including the progenitors in the calibration set reduced this difference in prediction accuracy to 0.03. When only genotypes from the G0 and G1 generations were used in the calibration set and genotypes from G2 were used in the validation set (progeny validation), prediction accuracies ranged from 0.70 to 0.85.ConclusionsThis study suggests that the training of prediction models on parental populations can predict the genetic merit of the progeny with high accuracy: an encouraging result for the implementation of GS in the maritime pine breeding program.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311104015813ZK.pdf 1632KB PDF download
1165KB Image download
12951_2015_155_Article_IEq18.gif 1KB Image download
12951_2015_155_Article_IEq20.gif 1KB Image download
12951_2015_155_Article_IEq21.gif 1KB Image download
MediaObjects/13046_2023_2846_MOESM6_ESM.pdf 313KB PDF download
12951_2015_155_Article_IEq23.gif 1KB Image download
Fig. 1 238KB Image download
12951_2017_315_Article_IEq1.gif 1KB Image download
Fig. 4 161KB Image download
MediaObjects/13046_2023_2846_MOESM8_ESM.pdf 161KB PDF download
Fig. 6 83KB Image download
12951_2015_111_Article_IEq1.gif 1KB Image download
Fig. 1 2753KB Image download
Table 2 61KB Table download
MediaObjects/13046_2023_2846_MOESM10_ESM.pdf 123KB PDF download
Fig. 3 393KB Image download
12951_2017_270_Article_IEq5.gif 1KB Image download
Fig. 5 282KB Image download
Fig. 1 3144KB Image download
12951_2015_111_Article_IEq2.gif 1KB Image download
42004_2023_1020_Article_IEq12.gif 1KB Image download
12951_2017_270_Article_IEq7.gif 1KB Image download
13100_2023_302_Article_IEq1.gif 1KB Image download
13100_2023_302_Article_IEq2.gif 1KB Image download
Fig. 7 1298KB Image download
Fig. 3 328KB Image download
42004_2023_1020_Article_IEq18.gif 1KB Image download
12951_2015_155_Article_IEq28.gif 1KB Image download
Fig. 5 115KB Image download
Fig. 4 1271KB Image download
MediaObjects/12974_2023_2896_MOESM2_ESM.tif 1653KB Other download
Fig. 2 1482KB Image download
13100_2023_302_Article_IEq7.gif 1KB Image download
Fig. 1 192KB Image download
12951_2015_111_Article_IEq4.gif 1KB Image download
Fig. 1 50KB Image download
MediaObjects/42004_2023_1020_MOESM3_ESM.mov 3708KB Other download
12951_2017_270_Article_IEq8.gif 1KB Image download
Fig. 6 196KB Image download
MediaObjects/12888_2023_5201_MOESM2_ESM.pdf 264KB PDF download
Fig. 5 50KB Image download
12951_2015_155_Article_IEq30.gif 1KB Image download
MediaObjects/12888_2023_5201_MOESM3_ESM.pdf 221KB PDF download
Fig. 1 96KB Image download
Fig. 2 582KB Image download
12951_2015_155_Article_IEq32.gif 1KB Image download
MediaObjects/12888_2023_5242_MOESM3_ESM.docx 20KB Other download
Table 1 278KB Table download
Fig. 1 3761KB Image download
MediaObjects/12888_2023_5256_MOESM1_ESM.docx 25KB Other download
MediaObjects/40249_2023_1146_MOESM6_ESM.png 166KB Other download
12944_2023_1927_Article_IEq13.gif 1KB Image download
MediaObjects/40249_2023_1146_MOESM7_ESM.tif 16152KB Other download
Fig. 3 3826KB Image download
【 图 表 】

Fig. 3

12944_2023_1927_Article_IEq13.gif

Fig. 1

12951_2015_155_Article_IEq32.gif

Fig. 2

Fig. 1

12951_2015_155_Article_IEq30.gif

Fig. 5

Fig. 6

12951_2017_270_Article_IEq8.gif

Fig. 1

12951_2015_111_Article_IEq4.gif

Fig. 1

13100_2023_302_Article_IEq7.gif

Fig. 2

Fig. 4

Fig. 5

12951_2015_155_Article_IEq28.gif

42004_2023_1020_Article_IEq18.gif

Fig. 3

Fig. 7

13100_2023_302_Article_IEq2.gif

13100_2023_302_Article_IEq1.gif

12951_2017_270_Article_IEq7.gif

42004_2023_1020_Article_IEq12.gif

12951_2015_111_Article_IEq2.gif

Fig. 1

Fig. 5

12951_2017_270_Article_IEq5.gif

Fig. 3

Fig. 1

12951_2015_111_Article_IEq1.gif

Fig. 6

Fig. 4

12951_2017_315_Article_IEq1.gif

Fig. 1

12951_2015_155_Article_IEq23.gif

12951_2015_155_Article_IEq21.gif

12951_2015_155_Article_IEq20.gif

12951_2015_155_Article_IEq18.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  文献评价指标  
  下载次数:1次 浏览次数:0次