期刊论文详细信息
BMC Genomics
Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine
Laurent Bouffier1  Joost van Heerwaarden5  Marco CAM Bink5  Fikret Isik4  François Ehrenmann1  Isabelle Lesur2  Eric Mandrou1  Jean-Baptiste Lamy1  Jeffrey Endelman3  Emilie Chancerel1  Christophe Plomion1 
[1] Univ. Bordeaux, BIOGECO, UMR1202, Talence F-33170, France;HelixVenture, Mérignac F-33700, France;Department Horticulture, University of Wisconsin, Madison, WI 53706, USA;Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA;Biometris, Wageningen University and Research Centre, Wageningen NL-6700 AC, Netherlands
关键词: Genomic selection;    Genomics;    Forest tree;    Breeding program;    Domestication;    Linkage map;    Recombination;    Linkage disequilibrium;    Genetic diversity;    Pinus pinaster;   
Others  :  1217825
DOI  :  10.1186/1471-2164-15-171
 received in 2013-11-24, accepted in 2014-02-21,  发布年份 2014
PDF
【 摘 要 】

Background

The accessibility of high-throughput genotyping technologies has contributed greatly to the development of genomic resources in non-model organisms. High-density genotyping arrays have only recently been developed for some economically important species such as conifers. The potential for using genomic technologies in association mapping and breeding depends largely on the genome wide patterns of diversity and linkage disequilibrium in current breeding populations. This study aims to deepen our knowledge regarding these issues in maritime pine, the first species used for reforestation in south western Europe.

Results

Using a new map merging algorithm, we first established a 1,712 cM composite linkage map (comprising 1,838 SNP markers in 12 linkage groups) by bringing together three already available genetic maps. Using rigorous statistical testing based on kernel density estimation and resampling we identified cold and hot spots of recombination. In parallel, 186 unrelated trees of a mass-selected population were genotyped using a 12k-SNP array. A total of 2,600 informative SNPs allowed to describe historical recombination, genetic diversity and genetic structure of this recently domesticated breeding pool that forms the basis of much of the current and future breeding of this species. We observe very low levels of population genetic structure and find no evidence that artificial selection has caused a reduction in genetic diversity. By combining these two pieces of information, we provided the map position of 1,671 SNPs corresponding to 1,192 different loci. This made it possible to analyze the spatial pattern of genetic diversity (He) and long distance linkage disequilibrium (LD) along the chromosomes. We found no particular pattern in the empirical variogram of He across the 12 linkage groups and, as expected for an outcrossing species with large effective population size, we observed an almost complete lack of long distance LD.

Conclusions

These results are a stepping stone for the development of strategies for studies in population genomics, association mapping and genomic prediction in this economical and ecologically important forest tree species.

【 授权许可】

   
2014 Plomion et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708112158392.pdf 3166KB PDF download
Figure 6. 42KB Image download
Figure 5. 72KB Image download
Figure 4. 47KB Image download
Figure 3. 48KB Image download
Figure 2. 141KB Image download
Figure 1. 406KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Farjon A: A natural history of conifers. Portland: Timber Press; 2008.
  • [2]Gernandt DS, Willyard A, Syring JV, Liston A: The conifers (Pinophyta). In Genetics, Genomics and Breeding of Conifer Trees. Edited by Plomion C, Bousquet J, Kole C. New York: Edenbridge Science Publishers and CRC Press; 2011:1-39.
  • [3]Mullin TJ, Andersson B, Bastien J-C, Beaulieu J, Burdon RD, Dvorak WS, King JN, Kondo T, Krakowski J, Lee SD, McKeand SE, Pâques L, Raffin A, Russell J, Skrøppa T, Stoehr M, Yanchuk A: Economic importance, breeding objectives and achievements. In Genetics, Genomics and Breeding of Conifer Trees. Edited by Plomion C, Bousquet J, Kole C. New York: Edenbridge Science Publishers and CRC Press; 2011:40-127.
  • [4]de Castro AM P, Vilanova S, Cañizares J, Pascual L, Blanca JM, Díez MJ, Prohens J, Picó B: Application of genomic tools in plant breeding. Current Genomics 2012, 13:179-195.
  • [5]Eggen A: The development and application of genomic selection as a new breeding paradigm. Anim Front 2012, 2:10-15.
  • [6]Plomion C, Bousquet J, Kole C: Genetics, Genomics and Breeding of Conifers. New York: Edenbridge Science Publishers and CRC Press; 2011.
  • [7]Mackay J, Dean J, Plomion C, Peterson D, Canovas F, Pavy P, Ingvarsson P, Savolainen O, Guevara MA, Fluch S, Vinceti B, Abarca D, Díaz-Sala C, Cervera MT: Towards decoding the conifer giga-genome. Plant Mol Biol 2012, 2012(80):555-569.
  • [8]Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson A, Rilakovic N, Ritland C, Rosselló JA, Sena J, et al.: The Norway spruce genome sequence and conifer genome evolution. Nature 2013, 497:579-584.
  • [9]Neale DB, Kremer A: Forest tree genomics: growing resources and applications. Nature Rev Genet 2011, 12:111-122.
  • [10]Yu J, Buckler ES: Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 2006, 17:155-160.
  • [11]Rafalski A: Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 2002, 5:94-100.
  • [12]Pritchard JK, Przeworski M: Linkage disequilibrium in humans: models and data. Am J Hum Genet 2001, 69:1-14.
  • [13]Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles C: Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 2012, 108:285-291.
  • [14]Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME: Invited review: Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 2009, 92:433-443.
  • [15]Grattapaglia D, Resende MDV: Genomic selection in forest tree breeding. Tree Genet Genomes 2010, 7:241-255.
  • [16]Meuwissen TH: Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genet Sel Evol 2009, 41:35. BioMed Central Full Text
  • [17]Daetwyler HD, Calus MP, Pong-Wong R, de Los Campos G, Hickey JM: Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 2013, 193:347-65.
  • [18]Pot D, Mac Millan L, Echt C, le Provost G, Garnier-Géré P, Cato S, Plomion C: Nucleotide diversity of genes involved in wood formation in Pinus pinaster and Pinus radiata. New Phytol 2005, 167:101-112.
  • [19]Eveno E, Soto A, Gonzalez-Martinez S, Collada C, Guevara MA, Cervera MT, Léger P, Plomion C, Garnier-Géré P: Contrasting outlier patterns on drought stress tolerance candidate genes in Pinus pinaster, as revealed by genetic differentiation analyses. Mol Biol Evol 2008, 25:417-437.
  • [20]Thavamanikumar S, Simon G, Southerton SG, Bossinger G, Thumma BR: Dissection of complex traits in forest trees—opportunities for marker-assisted selection. Tree Genet Genome 2013, 9:627-639.
  • [21]Pavy N, Namroud MC, Gagnon F, Isabel N, Bousquet J: The heterogenous levels of linkage disequilibrium in white spruce genes and comparative analysis with other conifers. Heredity 2012, 108:273-284.
  • [22]Neale DB, Savolainen O: Association genetics of complex traits in conifers. Trends Plant Sci 2004, 9:325-330.
  • [23]Khan MA, Korban SS: Association mapping in forest trees and fruit crops. J Exp Bot 2012, 63:4045-60.
  • [24]Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P: Association mapping for growth, straightness and wood-chemistry traits in the Pinus pinaster Aquitaine breeding population. Trees Genet Genomes 2012, 8:113-126.
  • [25]Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J: A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biology 2012, 10:84. BioMed Central Full Text
  • [26]Moritsuka E, Hisataka Y, Tamura M, Uchiyama K, Watanabe A, Tsumura Y, Tachida H: Extended linkage disequilibrium in non-coding regions in a conifer, Cryptomeria japonica. Genetics 2012, 190:1145-1148.
  • [27]Gaut SB, Wright SI, Rizzon C, Dvorak J, Anderson LK: Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 2007, 8:77-84.
  • [28]Jaramillo-Correa JP, Verdú M, González-Martínez SC: The contribution of recombination to heterozygosity differs among plant evolutionary lineages and life-forms. BMC Evol Biol 2010, 10:22. BioMed Central Full Text
  • [29]Tsumura Y, Uchiyama K, Moriguchi Y, Ueno S, Ihara-Ujino T: Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica. Heredity 2012, 109:349-360.
  • [30]Eckert AJ, Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, Gonzalez-Martinez SC, Neale DB: Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 2010, 185:969-982.
  • [31]Chancerel E, Lamy JB, Lesur I, Noirot C, Klopp C, Ehrenmann F, Boury C, Le Provost G, Label P, Lalanne C, Léger V, Salin F, Gion JM, Plomion C: High density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biology 2013, 11:50. BioMed Central Full Text
  • [32]Endelman JB: New algorithm improves fine structure of the barley consensus SNP map. BMC Genomics 2011, 12:407. BioMed Central Full Text
  • [33]Endelman JB, Plomion C: LPmerge: an R package for merging genetic maps by linear programming. Bioinformatics 2014. doi: 10.1093/bioinformatics/btu091
  • [34]Wu Y, Close TJ, Lonardi S: Accurate construction of consensus genetic maps via integer linear programming. IEEE/ACM Trans Comput Biol Bioinf 2011, 8:381-394.
  • [35]Maynard Smith J, Haigh J: The hitchhiking effect of a favorable gene. Genet Res 1974, 23:23-35.
  • [36]Brachi B, Morris GP, Borevitz JO: Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 2011, 12:232. BioMed Central Full Text
  • [37]Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157:1819-1829.
  • [38]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [39]Gonzalez-Martinez SC, Dillon S, Garnier-Géré P, Krutovsky KV, Alía R, Burgarella C, Eckert AJ, García-Gil MR, Grivet D, Heuertz M, Jaramillo-Correa JP, Lascoux M, Neale DB, Savolainen O, Tsumura Y, Vendramin GG: Patterns of Nucleotide Diversity and Association Mapping. In Genetics, Genomics and Breeding of Conifer Trees. Edited by Plomion C, Bousquet J, Kole C. New York: Edenbridge Science Publishers and CRC Press; 2011:239-275.
  • [40]Nielsen R, Joshua S, Paul JS, Albrechtsen A, Yun S, Song YS: Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 2011, 12:443-451.
  • [41]Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE: A robust, simple genotyping-by-sequencing (GBS) approach for high-diversity species. PLoS ONE 2011, 6:e19379.
  • [42]Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ, Burke JM: Development of a 10,000-locus genetic map of the sunflower genome based on multiple crosses. G3 2012, 2:721-729.
  • [43]Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R: Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 2009, 10:582. BioMed Central Full Text
  • [44]Sim S-C, Van Deynze A, Stoffel K, Douches DS, Zarka D, Ganal MW, Chetelat RT, Hutton SF, Scott JW, Gardner RG, Panthee DR, Mutschler M, Myers JR, Francis DM: High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS ONE 2012, 7:e45520.
  • [45]Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, Clarke JD, Graner E, Mcmullen MD, Falque M: A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLos ONE 2011, 6:e28334.
  • [46]Van Ooijen JW: Joinmap 4: Software for the calculation of genetic linkage maps in experimental populations. Wageningen, Netherlands: Kyazma BV; 2006.
  • [47]Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A: A high-density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 2007, 114:1091-1103.
  • [48]Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A: A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 2006, 7:206. BioMed Central Full Text
  • [49]Li H, Kilian A, Zhou M, Wenzl P, Huttner E, Mendham N, McIntyre L, Vaillancourt RE: Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley. Mol Genet Genomics 2010, 284:319-31.
  • [50]Yap IV, Schneider D, Kleinberg J, Matthews D, Cartinhour S, McCouch SR: A graph-theoretic approach to comparing and integrating genetic, physical and sequence-based maps. Genetics 2003, 165:2235-2247.
  • [51]Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao S, Cistué L, Cuesta-Marcos A, Forrest KL, Hayden J, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Vallés MP, Wulff BBH, Muehlbauer GJ, Doležel J, Close TJ: An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 2011, 4:238-249.
  • [52]Saintenac C, Falque M, Martin OC, Paux E, Feuillet C, Sourdille P: Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 2009, 181:393-403.
  • [53]Saintenac C, Faure S, Remay A, Choulet F, Ravel C, Paux E, Balfourier F, Feuillet C, Sourdille P: Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot. Chromosoma 2011, 120:185-198.
  • [54]Illy G: Recherches sur l’amélioration génétique du pin maritime. Ann Sci For 1966, 23:757-948.
  • [55]El-Kassaby YA, Ritland K: Impact of selection and breeding on the genetic diversity in Douglas-fir. Biodiv Conserv 1996, 5:795-813.
  • [56]Chaisurisri K, El-Kassaby YA: Genetic diversity in a seed production population vs natural populations of Sitka Spruce. Biodiv Conserv 1994, 3:512-523.
  • [57]Namroud MC, Bousquet J, Doerksen T, Beaulieu J: Scanning SNPs from a large set of expressed genes to assess the impact of artificial selection on the undomesticated genetic diversity of white spruce. Evol Appl 2012, 5:641-656.
  • [58]Bouffier L, Raffin A, Kremer A: Evolution of genetic variability for selected traits in breeding populations of maritime pine. Heredity 2008, 101:156-165.
  • [59]Ritland K, Krutovsky KV, Tsumura Y, Pelgas B, Isabel N, Bousquet : Genetic mapping in conifers. In Genetics, Genomics and Breeding of Conifer Trees. Edited by Plomion C, Bousquet J, Kole C. New York: Edenbridge Science Publishers and CRC Press; 2011:196-238.
  • [60]Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S: Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 2008, 1:95-111.
  • [61]Chagné D, Lalanne C, Madur D, Kumar S, Frigerio J-M, Krier C, Decroocq S, Savouré A, Bou Dagher-Kharrat M, Bertocchi E, Brach J, Plomion C: A high-density linkage map of Pinus pinaster based on AFLPs. Ann For Sci 2002, 59:627-636.
  • [62]Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB: Back to nature: Ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 2010, 19:3789-3805.
  • [63]Zapata-Valenzuela J, Whetten RW, Neale D, McKeand S, Isik F: Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. G3 2013, 3:909-916.
  • [64]Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R: SNP markers trace familial linkages in a cloned population of Pinus taeda - prospects for genomic selection. Tree Genet Genomes 2012, 8:1307-1318.
  • [65]Harfouche A, Meilan R, Kirst M, Morgante M, Boerjan W, Sabatti M, Scarascia Mugnozza G: Accelerating the domestication of forest trees in a changing world. Trends Plant Sci 2012, 17:64-72.
  • [66]Resende MFR, Munoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M: Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 2012, 190:1503-1510.
  • [67]Goddard M: Genomic Selection: Prediction of Accuracy and Maximisation of Long Term Response. Genetica 2009, 136:245-257.
  • [68]Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL, Schwarzacher T: Karyotype of Slash Pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. J Hered 1995, 86:289-296.
  • [69]Schneeberger K, Weigel D: Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 2011, 16:282-288.
  • [70]Grattapaglia D: Breeding forest trees by genomic selection: Current progress and the way forward. In Genomics of Plant Genetic Resources. Edited by Tuberosa R. Dordrecht: Springer Science+Business Media; 2014:652-682.
  • [71]El-Kassaby YA, Isik F, Whetten RW: Modern advances in tree breeding. In Challenges and opportunities for the world’s forest in the 21st century. Edited by Fenning T. Dordrecht: Springer Science+Business Media; 2014:441-459.
  • [72]Lindgren D, Gea LD, Jefferson PA: Loss of genetic diversity monitored by status number. Silvae Genet 1996, 45:52-59.
  • [73]Chancerel E, Lepoittevin C, Le Provost G, Lin YC, Jaramillo-Correa JP, Eckert AJ, Wegrzyn JL, Zelenika D, Boland A, Frigerio JM, Chaumeil P, Garnier-Géré P, Boury C, Grivet D, Gonzalez-Martinez SC, Rouzé P, van de Peer Y, Neale DB, Cervera MT, Kremer A, Plomion C: Development and implementation of a highly multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine. BMC Genomics 2011, 12:368. BioMed Central Full Text
  • [74]R Development Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. http://www.R-project.org/ webcite. ISBN ISBN 3-900051-07-0
  • [75]Sheather SJ: Density estimation. Stat Sci 2004, 19:588-597.
  • [76]Jones MC, Marron JS, Sheather SJ: A brief survey of bandwidth selection for density estimation. J Am Stat Assoc 1996, 91:401-407.
  • [77]Boos DD: Introduction to the bootstrap world. Stat Sci 2003, 18:168-174.
  • [78]Davison AC, Hinkley DV: Bootstrap methods and their application. New York: Cambridge University Press; 1997.
  • [79]Goddard ME, Hayes BJ, Meuwissen TH: Using the genomic relationship matrix to predict the accuracy of genomic selection. J Anim Breed Genet 2011, 128:409-421.
  • [80]Patterson N, Price AL, Reich D: Population structure and eigenanalysis. PLoS Genet 2006, 2:e190.
  • [81]Van Heerwaarden J, Ross-Ibarra J, Doebley J, Glaubitz JC, González JJ, Gaut BS, Eguiarte LE: Fine scale genetic structure in the wild ancestor of maize (Zea mays ssp. parviglumis). Mol Ecol 2010, 19:1162-1173.
  • [82]Tracy CA, Widom H: Level-spacing distributions and the airy kernel. Commun Math Phys 1994, 159:151-174.
  • [83]Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 2003, 164:1567-1587.
  • [84]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [85]Nei M: Molecular Evolutionary Genetics. New York: Columbia University Press; 1987.
  • [86]Peakall R, Smouse PE: GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28:2537-2539.
  • [87]Raymond M, Rousset F: GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 1995, 86:248-249.
  • [88]Rousset F: GENEPOP’007: a complete re-implementation of the Genepop software for Windows and Linux. Mol Ecol Res 2008, 8:103-106.
  • [89]Bachmaier M, Backes M: Variogram or semivariogram? Understanding the variances in variogram. Precision Agric 2008, 9:173-175.
  • [90]Cressie N, Hawkins DM: Robust estimation of the variogram: I. Math Geol 1980, 12:115-125.
  • [91]Cressie NAC: Statistics for Spatial Data. New York: John Wiley and Sons; 1993.
  • [92]Hill WG, Robertson A: Linkage disequilibrium in finite populations. Theor Appl Genet 1968, 38:226-231.
  • [93]Rogers AR, Huff C: Linkage disequilibrium between loci with unknown phase. Genetics 2009, 182:839-844.
  • [94]Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D: The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 2002, 30:190-193.
  • [95]Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doeblay J, Kresovich S, Goodman MM, Buckler ES: Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 2001, 98:11479-11484.
  • [96]Hill WG, Weir BS: Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 1988, 33:54-78.
  文献评价指标  
  下载次数:136次 浏览次数:36次