期刊论文详细信息
Advances in Aerodynamics
Effects of non-stationary wind velocity models on buffeting performance of closed-box girder suspension bridges
Research
Peng Lu1  Rui Zhou1  Yinan Lin1  Jinbo Zhu2  Yongxin Yang2 
[1] College of Civil and Transportation Engineering, Shenzhen University, 518060, Shenzhen, China;State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, 200092, Shanghai, China;
关键词: Suspension bridge;    Time-varying average wind velocity;    Uniform modulation function;    Non-uniform modulation function;    Non-stationary wind velocity;    Buffeting displacement response;   
DOI  :  10.1186/s42774-023-00158-w
 received in 2023-07-02, accepted in 2023-09-19,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Non-stationary characteristic in nature wind has a great effect on buffeting performance of long-span bridges. The influence of key parameters in non-stationary wind velocity models on nonlinear buffeting responses of a super long-span suspension bridge was investigated in this paper. Firstly, four non-stationary wind velocity models are established by combing the time-varying average wind velocity with an exponential function and the fluctuating wind velocity with four modulation functions, respectively. These non-stationary wind velocity models have obvious non-stationary characteristics and then are validated by the classical power spectrum densities. Finally, three displacement responses of the bridge deck under four different independent variables of β in the exponential function and four modulation functions were compared, respectively. Results show that the turbulence intensities using two non-uniform modulation functions (NMF) are larger than those using uniform modulation functions (uMF). Moreover, the root mean square (RMS) values of three displacement responses increase with the decrease of β. Besides, the RMS values of three displacement under two NMFs are larger than those under two uMFs, and their RMS values under the second uMF are the smallest.

【 授权许可】

CC BY   
© Chinese Aerodynamics Research Society 2023

【 预 览 】
附件列表
Files Size Format View
RO202311103695373ZK.pdf 5727KB PDF download
Fig. 3 739KB Image download
Fig. 4 964KB Image download
Fig. 1 630KB Image download
Fig. 9 45KB Image download
12936_2017_2014_Article_IEq78.gif 1KB Image download
Fig. 3 1801KB Image download
Fig. 1 2201KB Image download
MediaObjects/41408_2023_928_MOESM1_ESM.docx 12KB Other download
MediaObjects/13046_2023_2865_MOESM6_ESM.tif 2738KB Other download
Fig. 2 283KB Image download
Fig. 2 786KB Image download
Fig. 4 1825KB Image download
Fig. 1 395KB Image download
350KB Image download
Fig. 4 463KB Image download
Fig. 9 519KB Image download
Fig. 9 217KB Image download
MediaObjects/13046_2023_2853_MOESM2_ESM.pdf 2039KB PDF download
42004_2023_1025_Article_IEq7.gif 1KB Image download
Fig. 2 256KB Image download
40517_2023_273_Article_IEq2.gif 1KB Image download
Fig. 1 205KB Image download
40517_2023_273_Article_IEq4.gif 1KB Image download
MediaObjects/40249_2023_1146_MOESM1_ESM.png 4112KB Other download
40517_2023_273_Article_IEq6.gif 1KB Image download
Fig. 2 679KB Image download
MediaObjects/41408_2023_929_MOESM1_ESM.pdf 265KB PDF download
【 图 表 】

Fig. 2

40517_2023_273_Article_IEq6.gif

40517_2023_273_Article_IEq4.gif

Fig. 1

40517_2023_273_Article_IEq2.gif

Fig. 2

42004_2023_1025_Article_IEq7.gif

Fig. 9

Fig. 9

Fig. 4

Fig. 1

Fig. 4

Fig. 2

Fig. 2

Fig. 1

Fig. 3

12936_2017_2014_Article_IEq78.gif

Fig. 9

Fig. 1

Fig. 4

Fig. 3

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  文献评价指标  
  下载次数:7次 浏览次数:0次