期刊论文详细信息
BMC Medicine
Mitochondrial aldehyde dehydrogenase (ALDH2) protects against streptozotocin-induced diabetic cardiomyopathy: role of GSK3β and mitochondrial function
Research Article
Jacalyn R Maris1  Sara A Babcock1  Nan Hu1  Haichang Wang2  Jun Ren3  Yingmei Zhang3 
[1] Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, 82071, Laramie, WY, USA;Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China;Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China;Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, 82071, Laramie, WY, USA;
关键词: ALDH2;    cardiac contraction;    diabetes;    GSK3β;    mitochondrial function;   
DOI  :  10.1186/1741-7015-10-40
 received in 2012-01-18, accepted in 2012-04-23,  发布年份 2012
来源: Springer
PDF
【 摘 要 】

BackgroundMitochondrial aldehyde dehydrogenase (ALDH2) displays some promise in the protection against cardiovascular diseases although its role in diabetes has not been elucidated.MethodsThis study was designed to evaluate the impact of ALDH2 on streptozotocin-induced diabetic cardiomyopathy. Friendly virus B(FVB) and ALDH2 transgenic mice were treated with streptozotocin (intraperitoneal injection of 200 mg/kg) to induce diabetes.ResultsEchocardiographic evaluation revealed reduced fractional shortening, increased end-systolic and -diastolic diameter, and decreased wall thickness in streptozotocin-treated FVB mice. Streptozotocin led to a reduced respiratory exchange ratio; myocardial apoptosis and mitochondrial damage; cardiomyocyte contractile and intracellular Ca2+ defects, including depressed peak shortening and maximal velocity of shortening and relengthening; prolonged duration of shortening and relengthening; and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of Akt, glycogen synthase kinase-3β and Foxo3a (but not mammalian target of rapamycin), elevated PTEN phosphorylation and downregulated expression of mitochondrial proteins, peroxisome proliferator-activated receptor γ coactivator 1α and UCP-2. Intriguingly, ALDH2 attenuated or ablated streptozotocin-induced echocardiographic, mitochondrial, apoptotic and myocardial contractile and intracellular Ca2+ anomalies as well as changes in the phosphorylation of Akt, glycogen synthase kinase-3β, Foxo3a and phosphatase and tensin homologue on chromosome ten, despite persistent hyperglycemia and a low respiratory exchange ratio. In vitro data revealed that the ALDH2 activator Alda-1 and glycogen synthase kinase-3β inhibition protected against high glucose-induced mitochondrial and mechanical anomalies, the effect of which was cancelled by mitochondrial uncoupling.ConclusionsIn summary, our data revealed that ALDH2 acted against diabetes-induced cardiac contractile and intracellular Ca2+ dysregulation, possibly through regulation of apoptosis, glycogen synthase kinase-3β activation and mitochondrial function independent of the global metabolic profile.

【 授权许可】

Unknown   
© Zhang et al; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311103284601ZK.pdf 6108KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  文献评价指标  
  下载次数:8次 浏览次数:1次