期刊论文详细信息
Cell Communication and Signaling
Knockdown of the C. elegans Kinome identifies Kinases required for normal protein Homeostasis, Mitochondrial network structure, and Sarcomere structure in muscle
Research
Susann Lehmann1  Nathaniel J Szewczyk1  Joseph J Bass1 
[1] Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital, DE22 3DT, Derby, England;
关键词: Autophagy;    C. elegans;    Kinome;    MAPK;    Mitochondria;    Muscle;    Protein degradation;    Proteostasis;    Sarcomere;   
DOI  :  10.1186/1478-811X-11-71
 received in 2013-02-19, accepted in 2013-09-15,  发布年份 2013
来源: Springer
PDF
【 摘 要 】

BackgroundKinases are important signalling molecules for modulating cellular processes and major targets of drug discovery programs. However, functional information for roughly half the human kinome is lacking. We conducted three kinome wide, >90%, RNAi screens and epistasis testing of some identified kinases against known intramuscular signalling systems to increase the functional annotation of the C. elegans kinome and expand our understanding of kinome influence upon muscle protein degradation.Results96 kinases were identified as required for normal protein homeostasis, 74 for normal mitochondrial networks and 50 for normal sarcomere structure. Knockdown of kinases required only for normal protein homeostasis and/or mitochondrial structure was significantly less likely to produce a developmental or behavioural phenotype than knockdown of kinases required for normal sarcomere structure and/or other sub-cellular processes. Lastly, assessment of kinases for which knockdown produced muscle protein degradation against the known regulatory pathways in C. elegans muscle revealed that close to half of kinase knockdowns activated autophagy in a MAPK dependent fashion.ConclusionsRoughly 40% of kinases studied, 159 of 397, are important in establishing or maintaining muscle cell health, with most required for both. For kinases where decreased expression triggers protein degradation, autophagy is most commonly activated. These results increase the annotation of the C. elegans kinome to roughly 75% and enable future kinome research. As 33% of kinases identified have orthologues expressed in human muscle, our results also enable testing of whether identified kinases function similarly in maintaining human muscle homeostasis.

【 授权许可】

Unknown   
© Lehmann et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311103148295ZK.pdf 5077KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  文献评价指标  
  下载次数:1次 浏览次数:1次