期刊论文详细信息
Malaria Journal
Combining indoor and outdoor methods for controlling malaria vectors: an ecological model of endectocide-treated livestock and insecticidal bed nets
Research
Laith Yakob1  Jo Lines1  Mary Cameron1 
[1] Department of Disease Control, The London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK;
关键词: Malaria;    Malaria Control;    Indoor Residual Spray;    Malaria Vector;    Ivermectin;   
DOI  :  10.1186/s12936-017-1748-5
 received in 2016-11-23, accepted in 2017-02-24,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundMalaria is spread by mosquitoes that are increasingly recognised to have diverse biting behaviours. How a mosquito in a specific environment responds to differing availability of blood-host species is largely unknown and yet critical to vector control efficacy. A parsimonious mathematical model is proposed that accounts for a diverse range of host-biting behaviours and assesses their impact on combining long-lasting insecticidal nets (LLINs) with a novel approach to malaria control: livestock treated with insecticidal compounds (‘endectocides’) that kill biting mosquitoes.ResultsSimulations of a malaria control programme showed marked differences across biting ecologies in the efficacy of both LLINs as a stand-alone tool and the combination of LLINs with endectocide-treated cattle. During the intervals between LLIN mass campaigns, concordant use of endectocides is projected to reduce the bounce-back in malaria prevalence that can occur as LLIN efficacy decays over time, especially if replacement campaigns are delayed. Integrating these approaches can also dramatically improve the attainability of local elimination; endectocidal treatment schedules required to achieve this aim are provided for malaria vectors with different biting ecologies.ConclusionsTargeting blood-feeding mosquitoes by treating livestock with endectocides offers a potentially useful complement to existing malaria control programmes centred on LLIN distribution. This approach is likely to be effective against vectors with a wide range of host-preferences and biting behaviours, with the exception of species that are so strictly anthropophilic that most blood meals are taken on humans even when humans are much less available than non-human hosts. Identifying this functional relationship in wild mosquito populations and ascertaining the extent to which it differs, within as well as between species, is a critical next step before targets can be set for employing this novel approach and combination.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311103033803ZK.pdf 2044KB PDF download
MediaObjects/41408_2023_927_MOESM3_ESM.tif 2072KB Other download
MediaObjects/13049_2023_1131_MOESM3_ESM.mp4 884KB Other download
12951_2017_255_Article_IEq45.gif 1KB Image download
Fig. 1 4104KB Image download
【 图 表 】

Fig. 1

12951_2017_255_Article_IEq45.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  文献评价指标  
  下载次数:1次 浏览次数:1次